Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T21:31:25.114Z Has data issue: false hasContentIssue false

A generalization of the Peter-Weyl theorem

Published online by Cambridge University Press:  24 October 2008

G. V. Wood
Affiliation:
University of Warwick

Extract

The Peter-Weyl theorem states that for a compact topological group G, the set of finite dimensional (almost invariant) functions on G is uniformly dense in the set of continuous functions on G. In this paper, we consider the question: which subalgebras of C(G) inherit this property?

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Ambrose, W.Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1947), 364386.CrossRefGoogle Scholar
(2)Dunford, N. and Schwartz, J. T.Linear operators, vol. I (New York, 1958).Google Scholar
(3)Loomis, L. H.An introduction to abstract harmonic analysis (New York, 1953).Google Scholar
(4)Rickart, C. E.General theory of Banach algebras (New York, 1960).Google Scholar
(5)Schur, I.Zur Theorie der einfach transitiven Permutationsgruppen. S.B. Preuss. Akad. Wiss. Phys-Math. Kl. (1933) 598623.Google Scholar
(6)Tamaschke, O.Zur Theorie der Permutationsgruppen mit regulärer Untergruppen, I. Math. Z. 80 (1963), 328335.CrossRefGoogle Scholar
(7)Wielandt, H.Finite permutation groups (translation) (New York, 1964).Google Scholar