Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Estudillo, Francisco J. M.
and
Romero, Alfonso
1994.
On the Gauss curvature of maximal surfaces in the 3-dimensional Lorentz-Minkowski space.
Commentarii Mathematici Helvetici,
Vol. 69,
Issue. 1,
p.
1.
Latorre, José M.
and
Romero, Alfonso
2001.
New examples of Calabi–Bernstein problems for some nonlinear equations.
Differential Geometry and its Applications,
Vol. 15,
Issue. 2,
p.
153.
Fernández, Isabel
López, Francisco J.
and
Souam, Rabah
2005.
The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space.
Mathematische Annalen,
Vol. 332,
Issue. 3,
p.
605.
Fernández, Isabel
López, Francisco J.
and
Souam, Rabah
2007.
The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz–Minkowski space $$\mathbb{L}^3$$.
manuscripta mathematica,
Vol. 122,
Issue. 4,
p.
439.
Kim, Young Wook
and
Yang, Seong-Deog
2007.
Prescribing singularities of maximal surfaces via a singular Björling representation formula.
Journal of Geometry and Physics,
Vol. 57,
Issue. 11,
p.
2167.
Barreiro Chaves, Rosa Maria
and
Ferrer, Leonor
2007.
Nonexistence results and convex hull property for maximal surfaces in Minkowski three-space.
Pacific Journal of Mathematics,
Vol. 231,
Issue. 1,
p.
1.
Albujer, Alma L.
and
Alías, Luis J.
2009.
Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces.
Journal of Geometry and Physics,
Vol. 59,
Issue. 5,
p.
620.
Romero, Alfonso
and
Rubio, Rafael M.
2010.
On the mean curvature of spacelike surfaces in certain three-dimensional Robertson–Walker spacetimes and Calabi–Bernstein’s type problems.
Annals of Global Analysis and Geometry,
Vol. 37,
Issue. 1,
p.
21.
Romero, Alfonso
and
Rubio, Rafael M.
2010.
New proof of the Calabi-Bernstein theorem.
Geometriae Dedicata,
Vol. 147,
Issue. 1,
p.
173.
Caballero, Magdalena
Romero, Alfonso
and
Rubio, Rafael M.
2010.
Uniqueness of maximal surfaces in Generalized Robertson–Walker spacetimes and Calabi–Bernstein type problems.
Journal of Geometry and Physics,
Vol. 60,
Issue. 3,
p.
394.
Kim, Young-Wook
Koh, Sung-Eun
Shin, Hea-Yong
and
Yang, Seong-Deog
2011.
SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE.
Journal of the Korean Mathematical Society,
Vol. 48,
Issue. 5,
p.
1083.
Albujer, Alma L.
and
Alías, Luis J.
2012.
Recent Trends in Lorentzian Geometry.
Vol. 26,
Issue. ,
p.
49.
Fujimori, S.
Kim, Y.W.
Koh, S.-E.
Rossman, W.
Shin, H.
Takahashi, H.
Umehara, M.
Yamada, K.
and
Yang, S.-D.
2012.
Zero mean curvature surfaces in L3 containing a light-like line.
Comptes Rendus. Mathématique,
Vol. 350,
Issue. 21-22,
p.
975.
Kawakami, Yu
2013.
On the maximal number of exceptional values of Gauss maps for various classes of surfaces.
Mathematische Zeitschrift,
Vol. 274,
Issue. 3-4,
p.
1249.
CABALLERO, MAGDALENA
ROMERO, ALFONSO
and
RUBIO, RAFAEL M.
2013.
NEW CALABI–BERNSTEIN RESULTS FOR SOME ELLIPTIC NONLINEAR EQUATIONS.
Analysis and Applications,
Vol. 11,
Issue. 01,
p.
1350002.
Kawakami, Yu
2015.
Function-theoretic Properties for the Gauss Maps of Various Classes of Surfaces.
Canadian Journal of Mathematics,
Vol. 67,
Issue. 6,
p.
1411.
Rubio, Rafael M.
and
Salamanca, Juan J.
2015.
Maximal surface equation on a Riemannian 2-manifold with finite total curvature.
Journal of Geometry and Physics,
Vol. 92,
Issue. ,
p.
140.
Caballero, M.
Romero, A.
and
Rubio, R. M.
2015.
Calabi–Bernstein-Type Problems for Some Nonlinear Equations Arising in Lorentzian Geometry.
Journal of Mathematical Sciences,
Vol. 207,
Issue. 4,
p.
544.
Pelegrín, José A S
Romero, Alfonso
and
Rubio, Rafael M
2016.
On maximal hypersurfaces in Lorentz manifolds admitting a parallel lightlike vector field.
Classical and Quantum Gravity,
Vol. 33,
Issue. 5,
p.
055003.
Alías, Luis J.
Mastrolia, Paolo
and
Rigoli, Marco
2016.
Maximum Principles and Geometric Applications.
p.
499.