Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T07:37:50.910Z Has data issue: false hasContentIssue false

Homology and cohomology of locally supersoluble groups

Published online by Cambridge University Press:  24 October 2008

Derek J. S. Robinson
Affiliation:
Department of Mathematics, University of Illinois, Urbana, IL 61801, U.S.A.

Extract

In a recent article [13] a series of vanishing theorems was obtained for the (co)homology of locally nilpotent groups. These results assert that if (co)homology vanishes in low dimensions (0 or 1), then it vanishes in all dimensions, provided that the module satisfies an appropriate finiteness condition.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barnes, D. W., Schmid, P. and Stammbach, U.. Cohomological characterizations of saturated formations and homomorphisms of finite groups. Comment. Math. Helv. 53 (1978), 165173.CrossRefGoogle Scholar
[2]Bourbaki, N.. Commutative Algebra (Addison-Wesley, 1972).Google Scholar
[3]Dixon, M. R.. Formation Theory in a Class of Locally Finite Groups. Ph.D. Thesis, University of Warwick (1980).Google Scholar
[4]Fuchs, L.. Infinite Abelian Groups (Academic Press, 19701973).Google Scholar
[5]Goblot, R.. Sur les dérivés de certaines limites projectives. Application aux modules. Bull. Sci. Math. 94 (1970), 251255.Google Scholar
[6]Hartley, B.. Splitting over the locally nilpotent residual for a class of locally finite groups. Quart. J. Math. Oxford Ser. (2) 27 (1976), 395400.CrossRefGoogle Scholar
[7]Hilton, P. and Stammbach, U.. On torsion in the differentials of the Lyndon-Hochschild-Serre spectral sequence. J. Algebra 29 (1974), 349367.CrossRefGoogle Scholar
[8]Jensen, C. U.. Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules. Lecture Notes in Math. vol. 254 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[9]Matlis, E.. Injective modules over noetherian rings. Pacific J. Math. 8 (1958), 511528.CrossRefGoogle Scholar
[10]Mac Lane, S.. Homology (Springer, 1967).Google Scholar
[11]Newell, M. L.. Some splitting theorems for infinite supersoluble groups. Math. Z. 144 (1975), 265275.CrossRefGoogle Scholar
[12]Robinson, D. J. S.. The vanishing of certain homology and cohomology groups. J. Pure Appl. Algebra 7 (1976), 145167.CrossRefGoogle Scholar
[13]Robinson, D. J. S.. Cohomology of locally nilpotent groups. J. Pure Appl. Algebra, to appear.Google Scholar
[14]Talelli, O.. On minimal resolutions of metacyclic groups with periodic cohomology. Comm. Algebra 12 (1984), 13431360.CrossRefGoogle Scholar
[15]Tomkinson, M. J.. Supersolubility conditions and a Frattini-like subgroup. Quart. J. Math. Oxford Ser. (2) 29 (1978), 9399.CrossRefGoogle Scholar
[16]Tomkinson, M. J.. Splitting theorems in abelian-by-hypercyclic groups. J. Austral. Math. Soc. 25 (1978), 7191.CrossRefGoogle Scholar
[17]Wehrfritz, B. A. F.. Infinite Linear Groups (Springer, 1972).Google Scholar
[18]Winter, D. J.. Representations of locally finite groups. Bull. Amer. Math. Soc. 74 (1968), 145148.CrossRefGoogle Scholar
[19]Zaĭcev, D. I.. Hypercyclic extensions of abelian groups. Akad. Nauk Ukrain. SSR Inst. Mat. (1979), 1037.Google Scholar
[20]Zaĭcev, D. I.. On extensions of abelian groups. Akad. Nauk Ukrain. SSR Inst. Mat. (1980), 1640.Google Scholar
[21]Zaĭcev, D. I.. Soluble extensions of abelian groups. Akad. Nauk Ukrain. SSR Inst. Mat. (1981), 1425.Google Scholar