Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T20:50:30.175Z Has data issue: false hasContentIssue false

The inhomogeneous minimum of quadratic forms of signature ± 1

Published online by Cambridge University Press:  24 October 2008

Madhu Raka
Affiliation:
Panjab University, Chandigarh, India

Extract

Let Qr be a real indefinite quadratic form in r variables of determinant D ≠ 0 and of type (r1, r2), 0 < r1 < r, r = r1 + r2, S = r1r2 being the signature of Qr. It is known (e.g. Blaney (3)) that, given any real numbers c1, c2,…, cr, there exists a constant C depending only on r and s such that the inequality

has a solution in integers x1, x2, …, xr.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Barnes, E. S.The non-negative values of quadratic forms. Proc. London Math. Soc. (3), 5 (1955), 185196.CrossRefGoogle Scholar
(2)Birch, B. J.The inhomogeneous minimum of quadratic forms of signature zero. Acta Arithmetica 4 (1958), 8598.Google Scholar
(3)Blaney, H.Indefinite quadratic forms in n variables. Proc. London Math. Soc. 23 (1948), 153160.Google Scholar
(4)Davenport, H.Non-homogeneous ternary quadratic forms. Acta Math. 80 (1948), 6595.Google Scholar
(5)Davenport, H.On indefinite ternary quadratic forms. Proc. London Math. Soc. (2), 51 (1949), 145160.Google Scholar
(6)Dumir, V. C.Inhomogeneous minimum of indefinite quaternary quadratic forms. Proc. Cambridge Philos. Soc. 63 (1967), 277290.Google Scholar
(7)Hans-Gill, R. J. and Madhu, Raka. Inhomogeneous minimum of 5-ary quadratic forms of type (3, 2) or (2, 3); a conjecture of Watson. Monats. Math. 88, no. 4 (1979), 305320.Google Scholar
(8)Hans-Gill, R. J. and Madhu, Raka. Inhomogeneous minimum of indefinite quadratic forms in five variables of type (4, 1) or (1,4); a conjecture of Watson. Indian J. pure appl. Math. 11 (1) (01. 1980), 7591.Google Scholar
(9)Jackson, T. H.Small positive values of indefinite quadratic forms. J. London Math. Soc. (2), 1 (1969), 643659.Google Scholar
(10)Watson, G. L.Indefinite quadratic forms in many variables: the inhomogeneous minimum and a generalization. Proc. London Math. Soc. (3), 12 (1962), 564576.CrossRefGoogle Scholar