Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T18:51:33.140Z Has data issue: false hasContentIssue false

A note on stochastic integrators

Published online by Cambridge University Press:  24 October 2008

D. A. Edwards
Affiliation:
Mathematical Institute, 24–29 St Giles, Oxford

Extract

The object of this paper is to show that some important classes of stochastic processes can be proved to be stochastic integrators, in the sense of Bichteler[1], by entirely elementary methods. Let us recall what this means.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bichteler, K.. Stochastic integration and L p-theory of semimartingales. Ann. Probab. 9 (1981), 4989.CrossRefGoogle Scholar
[2]Burkholder, D. L.. Martingale transforms. Ann. Math. Statist. 37 (1966), 14941504.CrossRefGoogle Scholar
[3]Dellacherie, C.. Un survol de la théorie de l'intégrale stochastique. Stochastic Process. Appl. 10 (1980), 115144.CrossRefGoogle Scholar
[4]Dellacherie, C. and Meyer, P.-A.. Probabilitiés et Potentiel, Chapitres V–VIII (Hermann, 1980).Google Scholar
[5]Meyer, P.-A.. Martingales and Stochastic Integrals. Lecture Notes in Math. vol. 284 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[6]Meyer, P.-A.. Caractérisation des semimartingales, d'après Dellacherie. In Séminaire Probabilités XIII, Lecture Notes in Math. vol. 721 (Springer-Verlag, 1979). pp. 620623.CrossRefGoogle Scholar
[7]Neveu, J.. Martingales à Temps Discret (Masson, 1972).Google Scholar
[8]Rao, K. M.. Quasimartingales. Math. Scand. 24 (1969), 7992.CrossRefGoogle Scholar
[9]Rao, M. M.. Doob's decomposition and Burkholder's inequalities. In Séminaire Probabilités VI, Lecture Notes in Math. vol. 258 (Springer-Verlag, 1972). pp. 198201.Google Scholar
[10]Rogers, L. C. G. and Williams, D.. Diffusions, Markov Processes and Martingales, vol. 2 (Wiley, 1987).Google Scholar
[11]Stricker, C.. Quasimartingales, martingales locales, semimartingales et filtrations naturelles. Z. Wahrsch. Verw. Gebiete 39 (1977), 5564.CrossRefGoogle Scholar