Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:22:22.110Z Has data issue: false hasContentIssue false

On Riesz logarithmic summability of the ultraspherical series

Published online by Cambridge University Press:  24 October 2008

G. S. Pandey
Affiliation:
Vikram University, Ujjain, India

Extract

Let f{θ, φ) be a function defined for the range 0 ≤ φ π, 0 ≤ φ ≤ 2π on a sphere S. The ultraspherical series associated with this function is

where

and the ultraspherical polynomials are defined by the following expansion

.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Du Plessis, N.The Cesàro summability of Laplace series. J. London Math. Soc. 27 (1952), 337352.CrossRefGoogle Scholar
(2)Gupta, D. P.On the Cesàro summability of the ultraspherical series (1) and (2). Proc. Nat. Inst. Sci. India, vol. 24, A, no. 6 (1958), 269278 and 419–440.Google Scholar
(3)Hardy, G. H.The summability of a Fourier series by logarithmic means. Quart. J. Math. Oxford Series 2 (1931), 107112.CrossRefGoogle Scholar
(4)Hardy, G. H. and Rogosinski, W. W.Notes on Fourier series IV. Summability (R). Proc. Cambridge Philos. Soc. 43 (1947), 1025.CrossRefGoogle Scholar
(5)Kogbetliantz, E.Rechérches sur la summabilité des séries ultrasphériques des moyénnea arithmétiques. J. Math. Pures Appl. (9), 3 (1924), 107187.Google Scholar
(6)Obrechkoff, N.Sur la sommation de la série ultrasphérique par la méthode des moyennes arithmétiques. Rend. Circ. Mat. Palermo, 59 (1936), 266287.CrossRefGoogle Scholar
(7)Szego, G.Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, New York, vol. xxiii (1939).Google Scholar
(8)Titchmarsh, E. C.The theory of functions (Oxford, 1952).Google Scholar
(9)Whittaker, E. T. and Watson, G. N.A course of modern analysis, Fourth Edition (Cambridge, 1935).Google Scholar