Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-19T14:10:46.775Z Has data issue: false hasContentIssue false

On semifinite AW*-algebras

Published online by Cambridge University Press:  24 October 2008

J. D. Maitland Wright
Affiliation:
Department of Mathematics, University of Reading

Extract

Kaplansky (8, 9, 10) introduced the concept of an AW*-algebra and, by purely algebraic methods, succeeded in extending the ‘Type Theory’ of Murray and von Neumann from W*-algebras to these more general algebras. Every W*-algebra is an AW*-algebra but the converse is false, for there exist commutative AW*-algebras which are not W*-algebras.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Berberian, S. K.Baer *-Rings (Springer, 1972).CrossRefGoogle Scholar
(2)Dixmier, J.Les C*-algèbres et leurs représentations (Gauthier-Villars, 1969, 2nd edition).Google Scholar
(3)Dixmier, J.Les algèbres d'opérateurs dans l'espace Hilbertien (Gauthier-Villars, 1969, 2nd edition).Google Scholar
(4)Dixmier, J.Sur certains espaces considérés par M. H. Stone. Summa Brasil. Math. 2, fasc. 11 (1951), 151182.Google Scholar
(5)Dyer, J.Concerning AW*-algebras. J. Funct. Anal. (to appear).Google Scholar
(6)Kadison, R. V.Operator algebras with a faithful weakly-closed representation. Ann. of Math. 64 (1956), 175181.CrossRefGoogle Scholar
(7)Kadison, R. V. and Pedersen, G. K.Equivalence in operator algebras. Math. Scand. 27 (1970), 205222.CrossRefGoogle Scholar
(8)Kaplansky, I.Projections in Banach algebras. Ann. of Math. 53 (1951), 235249.CrossRefGoogle Scholar
(9)Kaplansky, I.Algebras of type I. Ann. of Math. 56 (1952), 460472.CrossRefGoogle Scholar
(10)Kaplansky, I.Modules over operator algebras. Amer. J. Math. 75 (1953), 839858.CrossRefGoogle Scholar
(11)Kaplansky, I.Rings of operators (Benjamin, 1968).Google Scholar
(12)Kelley, J. L.Measures in Boolean algebras. Pacific J. Math. 9 (1959), 11651177.CrossRefGoogle Scholar
(13)Maharam, D.An algebraic characterization of measure algebras. Ann. of Math. 48 (1947), 154167.CrossRefGoogle Scholar
(14)Pedersen, G. K.Operator algebras with weakly closed abelian subalgebras. Bull. London Math. Soc. 4 (1972), 171175.CrossRefGoogle Scholar
(15)Saito, K.A non-commutative theory of integration for a semifinite AW*-algebra and a problem of Feldman. Tohoku Math. J. 22 (1970), 420461.CrossRefGoogle Scholar
(16)Sakai, S.A characterization of W*-algebras. Pacific J. Math. 6 (1956), 763773.CrossRefGoogle Scholar
(17)Wright, H. D. M.On AW* of finite type. J. London Math. Soc. (to appear).Google Scholar