Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T03:17:31.664Z Has data issue: false hasContentIssue false

On weighted inhomogeneous Diophantine approximation on planar curves

Published online by Cambridge University Press:  01 October 2012

MUMTAZ HUSSAIN
Affiliation:
Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Victoria, Australia. e-mail: m.hussain@latrobe.edu.au
TATIANA YUSUPOVA
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO10, 5DD. e-mail: tatiana.yusupova@gmail.com

Abstract

This paper develops the metric theory of simultaneous inhomogeneous Diophantine approximation on a planar curve with respect to multiple approximating functions. Our results naturally generalize the homogeneous Lebesgue measure and Hausdorff dimension results for the sets of simultaneously well-approximable points on planar curves, established in Badziahin and Levesley (Glasg. Math. J., 49(2):367–375, 2007), Beresnevich et al. (Ann. of Math. (2), 166(2):367–426, 2007), Beresnevich and Velani (Math. Ann., 337(4):769–796, 2007) and Vaughan and Velani (Invent. Math., 166(1):103–124, 2006).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Badziahin, D., Beresnevich, V., and Velani, S. Inhomogeneous theory of dual Diophantine approximation on manifolds. Pre-print arXiv:1009.5638v1.Google Scholar
[2]Badziahin, D. and Levesley, J.A note on simultaneous and multiplicative Diophantine approximation on planar curves. Glasg. Math. J. 49 (2) (2007), 367375.CrossRefGoogle Scholar
[3]Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. (3) 21 (1970), 111.CrossRefGoogle Scholar
[4]Beresnevich, V.A Groshev type theorem for convergence on manifolds. Acta Math. Hungar. 94 (1–2) (2002), 99130.CrossRefGoogle Scholar
[5]Beresnevich, V., Dickinson, D. and Velani, S.Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179 (846) (2006), x+91.Google Scholar
[6]Beresnevich, V., Dickinson, D. and Velani, S.Diophantine approximation on planar curves and the distribution of rational points. Ann. of Math. (2), 166 (2) (2007), 367426. With an Appendix II by R. C. Vaughan.CrossRefGoogle Scholar
[7]Beresnevich, V. and Velani, S. A note on metric simultaneous Diophantine approximation. In preparation.Google Scholar
[8]Beresnevich, V. and Zorin, E.Explicit bounds for rational points near planar curves and metric Diophantine approximation. Adv. Math. 225 (6) (2010), 30643087.CrossRefGoogle Scholar
[9]Beresnevich, V. V., Vaughan, R. C. and Velani, S. L.Inhomogeneous Diophantine approximation on planar curves. Math. Ann. 349 (4) (2011), 929942.CrossRefGoogle Scholar
[10]Beresnevich, V. V. and Velani, S. L.A note on simultaneous Diophantine approximation on planar curves. Math. Ann. 337 (4) (2007), 769796.CrossRefGoogle Scholar
[11]Bernik, V. I. and Dodson, M. M.Metric Diophantine approximation on manifolds. Cambridge Tracts in Mathematics vol. 137 (Cambridge University Press, Cambridge, 1999).Google Scholar
[12]Cassels, J. W. S.An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics, No. 45 (Cambridge University Press, New York, 1957).Google Scholar
[13]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37 (1) (1990), 5973.CrossRefGoogle Scholar
[14]Falconer, K.Fractal Geometry: Mathematical Foundations and Applications. (John Wiley & Sons Ltd., Chichester, 1990).Google Scholar
[15]Gallagher, P. X.Metric simultaneous diophantine approximation. II. Mathematika 12 (1965), 123127.CrossRefGoogle Scholar
[16]Hussain, M. and Yusupova, T. Multiplicative inhomogeneous Diophantine approximation on planar curves. In preparation.Google Scholar
[17]Jarník, V.Über die simultanen diophantischen approximationen. Math. Z. 33 (1931), 505543.CrossRefGoogle Scholar
[18]Khintchine, A.Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92 (1-2) (1924), 115125.CrossRefGoogle Scholar
[19]Kleinbock, D. Y. and Margulis, G. A.Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148 (1) (1998), 339360.CrossRefGoogle Scholar
[20]Vaughan, R. C. and Velani, S.Diophantine approximation on planar curves: the convergence theory. Invent. Math. 166 (1) (2006), 103124.CrossRefGoogle Scholar