Article contents
A quadratic mapping with invariant cubic curve
Published online by Cambridge University Press: 24 October 2008
Abstract
In the projective plane, if H is a harmonic homology (linear transformation with H2 = I), and G a general inversion (quadratic transformation projectively equivalent to an inversion), then under a certain condition there is a pencil of cubics each of which is invariant under G, H separately. These are related to transformations discovered by Mandel, Todd and Lyness. As a near converse, we find that, given a Pascal configuration, there is a quadratic Cremona transformation under which each cubic passing through the vertices of the configuration is invariant. As a by-product, parametric expressions are found for elliptic functions of a fifth of a period.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 89 , Issue 1 , January 1981 , pp. 89 - 105
- Copyright
- Copyright © Cambridge Philosophical Society 1981
References
REFERENCES
- 6
- Cited by