Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T18:32:37.074Z Has data issue: false hasContentIssue false

Rings associated with ideals and analytic spread

Published online by Cambridge University Press:  24 October 2008

D. Rees
Affiliation:
University of Exeter

Extract

Let A be a Noether ring and let = (a1,…, ar) be an ideal of A. There are a number of graded rings that we can associate with . In this paper we shall be concerned with the following.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Böger, E.Minimalitätsbedingungen in der Theorie der Reductionen Idealen. Schr. Math. Inst. Munster Nr. 40 (1968).Google Scholar
(2)Burch, L.Codimension and analytic spread. Proc. Cambridge Philos. Soc. 72 (1973), 369373.CrossRefGoogle Scholar
(3)Northcott, D. G. and Rees, D.Reductions of ideals in local rings. Proc. Cambridge Philos. Soc. 50 (1954), 145158.CrossRefGoogle Scholar
(4)Ratliff, L. J. JrLocally quasi-unmixed Noetherian rings and ideals of the principal class. Pacific J. Math. 52 (1974), 185205.CrossRefGoogle Scholar
(5)Rees, D.Valuations associated with local rings (I). Proc. London Math. Soc. (3) 5 (1955), 107128.CrossRefGoogle Scholar
(6)Rees, D.Valuations associated with ideals. Proc. London Math. Soc. (3) 6 (1956), 161174.CrossRefGoogle Scholar
(7)Rees, D.Valuations associated with ideals (II). J. London Math. Soc. 31 (1956), 221228.CrossRefGoogle Scholar
(8)Rees, D.Valuations associated with local rings (II). J. London Math. Soc. 31 (1956), 228235.CrossRefGoogle Scholar
(9)Valla, G.Elementi indipendenti rispetto ad un ideale. Rend. Sem. Mat. Univ. Padova 44 (1970), 339354.Google Scholar