Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:06:04.865Z Has data issue: false hasContentIssue false

Some remarks on the existence of spacelike hypersurfaces of constant mean curvature

Published online by Cambridge University Press:  24 October 2008

A. J. Goddard
Affiliation:
Mathematical Institute, Oxford

Abstract

Bernstein's theorem states that the only complete minimal graphs in R3 are the hyperplanes. We shall produce evidence in favour of some conjectural generalizations of this theorem for the cases of spacelike hypersurfaces of constant mean curvature in Minkowski space and in de Sitter space. The results suggest that the class of asymptotically simple space-times admitting a complete spacelike hypersurface of constant mean curvature may well be considerably smaller than the general class of asymptotically simple space-times.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Almgren, F. J.Ann. of Math. 84 (1966), 277292.CrossRefGoogle Scholar
(2)Bernstein, S. N.Math. Z. 26 (1927), 551565.CrossRefGoogle Scholar
(3)Bombieri, E., de Giorgi, E. and Giusti, E.. Invent. Math. 7 (1969), 243268.CrossRefGoogle Scholar
(4)Calabi, E. (Preprint.)Google Scholar
(5)Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher Transcendental Functions (New York, McGraw-Hill, 1953).Google Scholar
(6)Fleming, W. H.Rend. Circ. Mat. Palermo 11 (1962), 6989.CrossRefGoogle Scholar
(7)de Giorgi, E.Ann. Scuola Norm. Sup. Pisa (Scienze Fis. Mat. III), 19 (1965), 7985.Google Scholar
(8)Hawking, S. W. and Ellis, G. F. R.The large-scale structure of space-time (Cambridge University Press, 1973).CrossRefGoogle Scholar
(9)Hoyle, F.Mon. Not. R.A.S. 108 (1948), 372382.CrossRefGoogle Scholar
(10)Jorgens, K.Math. Ann. 127 (1954), 130134.CrossRefGoogle Scholar
(11)Magnus, W., Oberhettinger, F. and Soni, R. P.Special functions of mathematics and physics 3rd ed. (Berlin, Springer-Verlag, 1966).Google Scholar
(12)Penrose, R. Relativistic symmetry groups. Group theory in nonlinear problems (ed. Barat, A. O.). N.A.T.O. Advanced Study Institute, no. 7 (Dordrecht, Reidel, 1974).Google Scholar
(13)Schucking, E. Talk given at the I.C.T.P., Trieste, 07 1975.Google Scholar
(14)Simons, J.Ann. of Math. 88 (1968), 62105.CrossRefGoogle Scholar