Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T06:42:15.399Z Has data issue: false hasContentIssue false

Some threefolds on which adjunction terminates

Published online by Cambridge University Press:  24 October 2008

L. Roth
Affiliation:
Imperial College of ScienceLondon

Extract

A well-known theorem, due to Castelnuovo and Enriques(1), states that a surface on which the process of successive adjunction, applied to any curve system, terminates, must be rational or scrollar; actually the result shows that, if the property in question holds for any one system of sufficiently general type, then it must hold for all systems; but this has not been established directly.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Castelnuovo, G. and Enriques, F.Ann. Mat. pura appl. (3), 6 (1901), 165.CrossRefGoogle Scholar
(2)Du Val, P.Proc. Camb. phil. Soc. 30 (1934), 453.CrossRefGoogle Scholar
(3)Enriques, F.Math. Ann. 49 (1897), 1.CrossRefGoogle Scholar
(4)Enriques, F.Le superficie algebriche (Bologna, 1949), p. 264.Google Scholar
(5)Enriques, F. and Chisini, O.Teoria geometrica delle equazioni, vol. 3 (Bologna, 1924), p. 108.Google Scholar
(6)Fano, G.Scritti matematici offerti a L. Berzolari (Pavia, 1936), p. 329.Google Scholar
(7)Fano, G.Mem. R. Accad. Ital. 8 (1937), 23.Google Scholar
(8)Roth, L.R.C. Accad. Lincei (8), 9 (1950), 246.Google Scholar
(9)Roth, L.Proc. Camb. phil. Soc. 47 (1951), 496.CrossRefGoogle Scholar
(10)Roth, L.R.C. Mat. R. Univ. Roma (5), 10 (1951), 297.Google Scholar
(11)Severi, F.R.C. Circ. mat. Palermo, 28 (1909), 33.CrossRefGoogle Scholar