Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T08:38:44.275Z Has data issue: false hasContentIssue false

Amenability of Lipschitz algebras

Published online by Cambridge University Press:  24 October 2008

Frédéric Gourdeau
Affiliation:
Département de Mathématiques et de Statistiques, Cité Universitaire, Québec, Canada GlK 7P4

Extract

In this article, we study the amenability of Banach algebras in general, and that of Lipschitz algebras in particular. After introducing an alternative definition of amenability, we extend a result of [5], thereby proving a new characterization of amenability for Banach algebras. This characterization relates the amenability of a Banach algebra A to the space of bounded homomorphisms from A into another Banach algebra B (Theorem 4). This result allows us to solve the problem of amenability for virtually all Lipschitz algebras (of complex or Banach algebra valued functions), a class of algebras which has been studied in [2], [4] and [5].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Richard, Arens. The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951), 839848.Google Scholar
[2]Bade, W. G., Curtis, P. C. Jr and Dales, H. G.. Amenability and weak-amenability in Beurling and Lipschitz algebras. Proc. London Math. Soc. (3) 55 (1987), 359377.CrossRefGoogle Scholar
[3]Bonsall, F. F. and Duncan, J.. Complete Normed Algebras (Springer-Verlag, 1973).CrossRefGoogle Scholar
[4]Curtis, P. C. Jr and Loy, R. J.. The structure of amenable Banach algebras. J. London Math. Soc. (2) 40 (1989), 89104.CrossRefGoogle Scholar
[5]Frédéric, Gourdeau. Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 105 (1989), 351355.Google Scholar
[6]Johnson, B. E.. Cohomology in Banach Algebras. Memoirs Amer. Math. Soc. no. 127 (American Mathematical Society, 1972).CrossRefGoogle Scholar
[7]Pier, J.-P.. Amenable Banach Algebras. Research Notes in Math. no. 172 (Pitman, 1988).Google Scholar
[8]Ülcer, A.. Weakly compact bilinear forms and Arens regularity. Proc. Amer. Math. Soc. 101 (1987), 697704.Google Scholar