Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:46:58.670Z Has data issue: false hasContentIssue false

An extension of a theorem of Mehler's on Hermite polynomials

Published online by Cambridge University Press:  24 October 2008

W. F. Kibble
Affiliation:
Madras Christian CollegeTambaramIndia

Extract

It was shown by Mehler (1866) that

where Hk(x) denotes the Hermite polynomial

(Hermite, 1864a, b), which can be expressed in terms of Weber's parabolic cylinder function (Whittaker, 1903). The series is convergent if | ρ | < 1, and divergent if | ρ | > 1. If ρ = 1 and x = y = 0 the series is divergent, and Hille's work (1938) shows that it will therefore be divergent for all real or complex values, except possibly real positive values, of x and y.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1945

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, A. C. and Gonin, H. T.On fourfold sampling with and without replacement. Proc. Roy. Soc. Edinb. 55 (1935), 114–25.Google Scholar
Campbell, J. T.The Poisson correlation function. Proc. Edinb. Math. Soc. 4, series 2 (1932), 1826.CrossRefGoogle Scholar
Geronimus, J.On the polynomials of Legendre and Hermite. Tôhoku Math. J. 34 (1931), 295–6.Google Scholar
Hardy, G. H.Summation of a series of polynomials of Laguerre. J. Lond. Math. Soc. 7 (1932), 138–40.CrossRefGoogle Scholar
Hermite, C.Sur un nouveau développement en série des fonctions. C.R. Acad. Sci., Paris, 58 (1864 a), 93100.Google Scholar
Hermite, C.Sur un nouveau développement en série des fonctions. C.R. Acad. Sci., Paris, 58 (1864 b), 266–73.Google Scholar
Hille, E.On the absolute convergence of polynomial series. Amer. Math. Mon. 45 (1938), 220–6 (p. 220).CrossRefGoogle Scholar
Kendall, M. G.The advanced theory of statistics, vol. 1 (1943, C. Griffen and Co. Ltd.).Google Scholar
Kibble, W. F.A two-variate gamma-type distribution. Sankhyā, 5 (1941), 137–50.Google Scholar
Mehler, G.Reihenentwicklungen nach Laplaceschen Functionen hoherer Ordnung. J. reine angew. Math. 66 (1866), 161–76 (p. 174).Google Scholar
Watson, G. N.Notes on the generating functions of polynomials: (1) Laguerre polynomials. J. Lond. Math. Soc. 8 (1933 a), 189–92.CrossRefGoogle Scholar
Watson, G. N.Notes on the generating functions of polynomials: (2) Hermite polynomials. J. Lond. Math. Soc. 8 (1933 b), 194–9.CrossRefGoogle Scholar
Whittaker, E. T.The functions associated with the parabolic cylinder in harmonic analysis. Proc. Lond. Math. Soc. 35 (1903), 417–27 (p. 423).Google Scholar