Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T06:14:22.735Z Has data issue: false hasContentIssue false

An infinite summation formula associated with Appell's function F2

Published online by Cambridge University Press:  24 October 2008

H. M. Srivastava
Affiliation:
Department of Mathematics, West Virginia University, Morgantown, West Virginia, U.S.A.

Extract

1. Recently in these proceedings we proved that, if ℜ(α) > 1 and ℜ(α) > − 1, then ((10), p. 1088)

where F2 denotes the Appell function (see, e.g., (8), p. 211),

with, as usual,

and for covergence of the double series,

and xy indicates the presence of a second term that originates from the first by interchanging x and y.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Appell, P.et Kampé de Fériet, J.Fonctions hypergéométriques et hypersphériques (Paris: Gauthier–Villars, 1926).Google Scholar
(2)Bailey, W. N.Generalized hypergeometric series (Cambridge, 1935).Google Scholar
(3)Erdélyi, A.Transformations of hypergeometric functions of two variables. Proc. Roy. Soc. Edinburgh, Sect. A 62 (1948), 378385.Google Scholar
(4)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. I (New York: McGraw-Hill, 1953).Google Scholar
(5)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. II (New York: McGraw-Hill, 1953).Google Scholar
(6)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Tables of integral transforms, vol. II (New York: McGraw-Hill, 1954).Google Scholar
(7)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(8)Slater, L. J.Generalized hypergeometric functions (Cambridge, 1966).Google Scholar
(9)Srivastava, H. M.The integration of generalized hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 761764.CrossRefGoogle Scholar
(10)Srivastava, H. M.On a summation formula for the Appell function F2. Proc. Cambridge Philos. Soc. 63 (1967), 10871089.CrossRefGoogle Scholar