Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T16:35:35.208Z Has data issue: false hasContentIssue false

An origami of genus 3 with arithmetic Kontsevich–Zorich monodromy

Published online by Cambridge University Press:  08 March 2019

PASCAL HUBERT
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, I2M - UMR 7373, 13453 Marseille, France. e-mail: hubert.pascal@gmail.com
CARLOS MATHEUS SANTOS
Affiliation:
Centre de Mathématiques Laurent Schwartz, CNRS (UMR 7640), École Polytechnique, 91128 Palaiseau, France. e-mail: carlos.matheus@math.cnrs.fr URL: http://carlos.matheus.perso.math.cnrs.fr/

Abstract

In this we exploit the arithmeticity criterion of Oh and Benoist–Miquel to exhibit an origami in the principal stratum of the moduli space of translation surfaces of genus three whose Kontsevich–Zorich monodromy is not thin in the sense of Sarnak.

Type
Research Article
Copyright
© Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avila, A., Matheus, C. and Yoccoz, J.–C.. Zorich conjecture for hyperelliptic Rauzy–Veech groups. Math. Ann. 370 (2018), 785809.CrossRefGoogle Scholar
Benoist, Y. and Miquel, S.. Arithmeticity of discrete subgroups containing horospherical lattices, Preprint (2018) available at arXiv:1805.00045.Google Scholar
Brav, C. and Thomas, H.. Thin monodromy in Sp(4). Compositio Math. 150 (2014), 333343.CrossRefGoogle Scholar
Eskin, A., Kontsevich, M. and Zorich, A.. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow. Publ. Math. Inst. Hautes Études Sci. 120 (2014), 207333.CrossRefGoogle Scholar
Eskin, A., Kontsevich, M. and Zorich, A.. Lyapunov spectrum of square-tiled cyclic covers. J. Mod. Dyn. 5 (2011), no. 2, 319353.CrossRefGoogle Scholar
Eskin, A. and Matheus, C.. A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves. Geom. Dedicata 179 (2015), 4567.CrossRefGoogle Scholar
Forni, G.. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle. Appendix by Carlos Matheus. J. Mod. Dyn. 5 (2011), 355395.Google Scholar
Forni, G. and Matheus, C.. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. J. Mod. Dyn. 8 (2014), 271436.CrossRefGoogle Scholar
Fuchs, E. and Rivin, I.. Generic thinness in finitely generated subgroups of SLn (ℤ). Int. Math. Res. Not. IMRN (2017), no. 17, 53855414.Google Scholar
Gutiérrez–Romo, R.. Classification of Rauzy–Veech groups: proof of the Zorich conjecture. Invent. Math. (2018).Google Scholar
Matheus, C.. Möller, M. and Yoccoz, J.–C.. A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. Invent. Math. 202 (2015), 333425.CrossRefGoogle Scholar
Oh, H.. On discrete subgroups containing a lattice in a horospherical subgroup. Israel J. Math. 110 (1999), 333340.CrossRefGoogle Scholar
Prasad, G. and Rapinchuk, A.. Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces. Thin groups and superstrong approximation. Math. Sci. Res. Inst. Publ. 61, (Cambridge University Press, Cambridge, 2014), 211252.Google Scholar
Rivin, I.. Large Galois groups with applications to Zariski density. Preprint (2015) available at arxiv.1312.3009.Google Scholar
Sarnak, P.. Notes on thin matrix groups. Thin groups and superstrong approximation. Math. Sci. Res. Inst. Publ., 61 (Cambridge University Press, Cambridge), (2014), 343362.Google Scholar
Singh, S. and Venkataramana, T. N.. Arithmeticity of certain symplectic hypergeometric groups. Duke Math. J. 163 (2014), 591617.CrossRefGoogle Scholar