Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:03:07.139Z Has data issue: false hasContentIssue false

Analytic functions with values in lattices and symmetric spaces of measurable operators

Published online by Cambridge University Press:  24 October 2008

Quanhua Xu
Affiliation:
Université des Sciences et Techniques de Lille Flandres Artois, U.F.R. de Mathématiques Pures et Appliquées, U.R.A. C.N.R.S. D 751, 59655 Villeneuve d'ascq Cedex, France and Wuhan University

Abstract

Let 0 < p,pi ≤ ∞, 0 < q,qi < ∞ (i = 1, 2) such that

Let E be a quasi-Banach lattice which fails to contain c0 and whose α-convexity constant is equal to 1 for some 0 < α < ∞. Then for every fH(E(q)) there exist gHp, 0(E(q0)), hHp1(E(q1)) such that

Consequently, E is q-concave for some finite q if and only if E is uniformly H1-convexifiable in the sense of [24]. Analogous results are also obtained for symmetric spaces of measurable operators. Another result proved in the paper says that if E is a symmetric quasi-Banach function space on (0, ∞) having the analytic Radon–Nikodym property then LE(M, τ) also possesses this property for any semifinite von Neumann algebra (M, τ).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bourgain, J. and Rosenthal, H. P.. Applications of the theory of semi-embeddings to Banach space theory. J. Funct. Anal. 52 (1983), 149188.Google Scholar
[2]Bukhvalov, A. V. and Danilevich, A. A.. Boundary properties of analytic and harmonic functions with values in Banach spaces. Math. Notes 31 (1982), 104110.CrossRefGoogle Scholar
[3]Davis, W. J., Garling, D. J. H. and Tomczak-Jaegermann, N.. The complex convexity of quasi-normed spaces. J. Funct. Anal. 55 (1984), 110150.CrossRefGoogle Scholar
[4]Dilworth, S. J.. Complex convexity and the geometry of Banach spaces. Math. Proc. Camb. Phil. Soc. 99 (1986), 495506.CrossRefGoogle Scholar
[5]Dowling, P. M.. Representable operators and the analytic Radon–Nikodym property in Banach spaces. Proc. Royal Irish Acad. 85A (1985), 143150.Google Scholar
[6]Duren, P. L.. Theory of Hp-Spaces (Academic Press, 1970).Google Scholar
[7]Edgar, E. A.. Analytic martingale convergence. J. Funct. Anal. 69 (1986), 268280.CrossRefGoogle Scholar
[8]Fack, T. and Kosaki, H.. Generalized s-numbers of r-measurable operators. Pacific J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[9]Garnett, J.. Bounded Analytic Functions (Academic Press, 1981).Google Scholar
[10]Ghoussoub, N. and Maurey, B.. Plurisubharmonic martingales and barriers in complex quasi-Banach spaces. Ann. Inst. Fourier. 39 (1989), 10071060.Google Scholar
[11]Gohberg, I. C. and Krein, M. G.. Introduction to the theory of linear non self-adjoint operators. Translations of Mathematical Monographs, Vol. 18. Amer. Math. Soc. 1969.Google Scholar
[12]Haagerup, U. and Pisier, G.. Factorization of analytic functions with values in non-commutative L 1-spaees and applications. Canadian J. Math. 41 (1989), 882906.Google Scholar
[13]Kalton, N. J.. Differentiability properties of vector-valued functions. Lecture Notes Math. Springer-Verlag, 1221 (1986), 141181.Google Scholar
[14]Kalton, N. J.. Convexity conditions for locally convex lattices. Glasgow J. Math. 23 (1984), 141152.CrossRefGoogle Scholar
[15]Lindenstrauss, J. and L.|Tzafriri. Classical Banach spaces II (Springer-Verlag, 1979).CrossRefGoogle Scholar
[16]Nelson, E.. Notes on non-commutative integration. J. Fund. Anal. 15 (1974), 103116.Google Scholar
[17]Ovchinnikov, V. I.. s-numbers of measurable operators. Funct. Anal. Appli. 4 (1970), 236242.CrossRefGoogle Scholar
[18]Ovchinnikov, V. I.. Symmetric spaces of measurable operators. Soviet Math. Dokl. 11 (1970), 448451.Google Scholar
[19]Peetre, J. and Sparr, G.. Interpolation and non-commutative integration. Ann. Mat. Pura. Appl. 104 (1975), 187207.Google Scholar
[20]Pisier, G.. Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975), 326350.Google Scholar
[21]Sarason, D.. Generalized interpolation in H. Trans. Amer. Math. Soc. 127 (1967), 179203.Google Scholar
[22]Takesaki, M.. Theory of operator algebras (Springer-Verlag, 1979).CrossRefGoogle Scholar
[23]Tomczak-Jaegermann, N.. Uniform convexity of unitary ideals. Israel J. Math. 48 (1984), 249254.Google Scholar
[24]Xu, Q.. Inégalités pour les martingales de Hardy et renormage des espaces quasi-normés. C.R. Acad. Paris 306 (1988), 601604.Google Scholar
[25]Xu, Q.. Convexité uniforme des espaces symétriques d'operateurs mesurables. C.R. Acad. Paris 309 (1989), 251254.Google Scholar
[26]Xu, Q.. Applications du théorème de factorisation pour des fonctions à valeurs opérateurs. Studia Math. 95 (1989), 273292.CrossRefGoogle Scholar
[27]Xu, Q.. Convexités uniformes et inégalités de martingales. Math. Ann. 287 (1990), 193211.Google Scholar