Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T17:01:24.824Z Has data issue: false hasContentIssue false

Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators

Published online by Cambridge University Press:  24 October 2008

Simon P. Eveson
Affiliation:
Department of Mathematics, University of York, Heslington, York YO1 5DD
Roger D. Nussbaum
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey, U.S.A.08904

Extract

This paper may be regarded as a sequel to our earlier paper [19], where we give an elementary and self-contained proof of a very general form of the Hopf theorem on order-preserving linear operators in partially ordered vector spaces (reproduced here as Theorem 1·1).

Versions of this theorem and related ideas have been used by various authors to study both linear and nonlinear integral equations (Thompson [41], Bushell [9, 11], Potter [38, 39], Eveson [16, 17], Bushell and Okrasiriski [12, 13]); the convergence properties of nonlinear maps (Nussbaum [32, 33]); so-called DAD theorems (Borwein, Lewis and Nussbaum [8]) and in the proof of weak ergodic theorems (Fujimoto and Krause [20], Nussbaum [34]).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bauer, F. L.. An elementary proof of the Hopf inequality for positive operators. Numerische Math. 7 (1965), 331337.CrossRefGoogle Scholar
[2]Bauer, F. L., Deutsch, E. and Stoer, J.. Abschätzungen für die Eigenwerte positiver linearer Operatoren. Linear Algebra and its Applications 2 (1969), 275301.CrossRefGoogle Scholar
[3]Bauer, H. and Bear, H. S.. The part metric in convex sets. Pacific Journal of Mathematics 30 (1969), 1533.CrossRefGoogle Scholar
[4]Bear, H. S.. Part metric and hyperbolic metric. American Mathematical Monthly (02 1991), 109123.CrossRefGoogle Scholar
[5]Birkhoff, G.. Extensions of Jentzsch's Theorem. Trans. Amer.Math. Soc. 5 (1957), 219226.Google Scholar
[6]Birkhoff, G.. Uniformly semi-primitive multiplicative processes. Trans. Amer.Math. Soc. 104 (1962), 3751.CrossRefGoogle Scholar
[7]Birkhoff, G.. Uniformly semi-primitive ultiplicative processes II. Journal of Mathematics and Mechanics 14 (3) (1965), 507512.Google Scholar
[8]Borween, J. M., Lewis, A. S. and Nussbaum, R. D.. Entropy minimization, DAD problems and doubly stochastic kernels. J. Functional Analysis, to appear.Google Scholar
[9]Bushell, P. J.. Hilbert's projective metric and positive contraction mappings in a Banaeh space. Arch. Rational Mech. Anal. 52 (1973), 330338.CrossRefGoogle Scholar
[10]Bushell, P. J.. On the projective contraction ratio for positive linear mappings. J. London Math. Soc. 6 (1973), 256258.CrossRefGoogle Scholar
[11]Bushell, P. J.. On a class of Volterra and Fredholm nonlinear integral equations. Math. Proc. Camb. Phil. Soc. 79 (1976), 329335.CrossRefGoogle Scholar
[12]Bushell, P. J. and Okrasiński, W.. Nonlinear Volterra integral equations with convolution kernel. J. London Math. Soc. 41 (1990), 503510.CrossRefGoogle Scholar
[13]Bushell, P. J. and Okrasiński, W.. Nonlinear Volterra integral equations and the Apery identities. Bull. London Math. Soc. 244 (1992), 478484.CrossRefGoogle Scholar
[14]Deimling, K.. Nonlinear Functional Analysis (Springer-Verlag, 1985).CrossRefGoogle Scholar
[15]Dobrushin, R. L.. Central limit theorem for nonstationary Markov chains II. Theory Prob. Appl. 1 (1956), 329383.CrossRefGoogle Scholar
[16]Eveson, S. P.. An integral equation arising from a problem in mathematical biology. Bull. London Math. Soc. 23 (1991), 293299.CrossRefGoogle Scholar
[17]Eveson, S. P.. Theory and applications of Hilbert's projective metric to linear and nonlinear problems in positive operator theory. PhD thesis, University of Sussex (1991).Google Scholar
[18]Eveson, S. P.. Hilbert's projective metric and the spectral properties of positive linear operators. Proc. London Math. Soc., to appear.Google Scholar
[19]Eveson, S. P. and Nussbaum, R. D.. An elementary proof of the Birkhoff-Hopf theorem. Math. Proc. Camb. Phil. Soc. 117 (1995), 3155.CrossRefGoogle Scholar
[20]Fujimoto, T. and Krause, U.. Asymptotic properties for inhomogeneous iterations of nonlinear operators. SIAM J. Math. Anal. 19 (1988), 841853.CrossRefGoogle Scholar
[21]Hadeler, K. P.. Bemerkung zu einer Arbeit von W. Wetterling über postive Operatoren. Numer.Math. 19 (1972), 260265.CrossRefGoogle Scholar
[22]Hopf, E.. An inequality for positive integral operators. J. Math. Mech. 12 (1963) 683692.Google Scholar
[23]Hopf, E.. Remarks on my paper ‘An inequality for positive integral operators’. J. Math. Mech. 12 (1963), 889892.Google Scholar
[24]Ishikawa, S. and Nussbaum, R. D.. Some remarks on differential equations of quadratic type. J. Dynamics and Differential Equations 3 (1991), 457490.CrossRefGoogle Scholar
[25]Jameson, G. J. O.. Ordered Linear Spaces. Lecture Notes in Mathematics vol. 141 (Springer-Verlag, 1970).CrossRefGoogle Scholar
[26]Krasnosel'skii, M. A.. Positive Solutions of Operator Equations (Noordhoff, Groningen, 1964). English translation by Richard E. Flaherty, edited by Boron, Leo F..Google Scholar
[27]Krasnosel'skii, M. A., Lifshits, J. A. and Sobolev, A. V.. Positive Linear Systems: the Method of Positive Operators, Sigma Series in Applied Mathematics vol. 5 (Heldermann Verlag, 1989).Google Scholar
[28]Krasnosel'skii, M. A. and Sobolev, A. V.. Spectral clearance of a focusing operator. Funct. Anal. Appl. 17 (1983), 5859.CrossRefGoogle Scholar
[29]Nussbaum, R. D.. The radius of the essential spectrum. Duke Math. J. 38 (1970), 473478.Google Scholar
[30]Nussbaum, R. D.. Spectral mapping theorems and perturbation theorems for Browder's essential spectrum. Trans. Amer. Math. Soc. 150 (1970), 445455.Google Scholar
[31]Nussbaum, R. D.. Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In Fadell, E. and Fournier, G., editors. Fixed Point Theory, Lecture Notes in Mathematics vol. 886, 309331 (Springer-Verlag, 1981).CrossRefGoogle Scholar
[32]Nussbaum, R. D.. Hilbert's projective metric and iterated nonlinear maps. Memoirs of the American Math. Soc. 75 (391) (1988).CrossRefGoogle Scholar
[33]Nussbaum, R. D.. Hilbert's projective metric and iterated nonlinear maps II. Memoirs of the American Math. Soc. 401 (1989).Google Scholar
[34]Nussbaum, R. D.. Some nonlinear weak ergodic theorems. SIAM J. Math. Anal. 21 (1990), 436460.CrossRefGoogle Scholar
[35]Nussbaum, R. D.. Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations. Differential and Integral Equations, to appear.Google Scholar
[36]Ostrowski, A. M.. Positive matrices and functional analysis. In Recent Advances in Matrix Theory, 81101 (University of Wisconsin Press, 1964).Google Scholar
[37]Pokornyi, Y. V.. Inequality for second characteristic values of positive operators of certain classes. Mathematical Notes of the Academy of Sciences of the USSR 9 (1) (1971), 1720. CTC Translation.Google Scholar
[38]Potter, A. J. B.. Existence theorem for a nonlinear integral equation. J. London Math. Soc. (2) 11 (1975), 710.CrossRefGoogle Scholar
[39]Potter, A. J. B.. Applications of Hilbert's projective metric to certain classes of non-homogeneous operators. Quart. J. Math. Oxford (2) 28 (1977), 9399.CrossRefGoogle Scholar
[40]Schaefer, H. H.. Topological Vector Spaces (Macmillan, 1966).Google Scholar
[41]Thompson, A. C.. On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963), 438443.Google Scholar
[42]Zabreiko, P. P., Krasnosel'skii, M. A. and Pokornyi, Y. V.. On a class of positive linear operators. Functional Analysis and its Applications 5 (4) (1972), 272279.CrossRefGoogle Scholar