Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-19T06:40:01.770Z Has data issue: false hasContentIssue false

Asymptotic growth of algebras associated to powers of ideals

Published online by Cambridge University Press:  04 August 2009

STEVEN DALE CUTKOSKY
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A. e-mail: cutkoskys@missouri.edu
JÜRGEN HERZOG
Affiliation:
Fachbereich Mathematik, Universität Duisburg–Essen, Campus Essen, 45117 Essen, Germany. e-mail: juergen.herzog@uni-essen.de
HEMA SRINIVASAN
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A. e-mail: srinivasanh@missouri.edu

Abstract

We study generalized symbolic powers and form ideals of powers and compare their growth with the growth of ordinary powers, and we discuss the question of when the graded rings attached to symbolic powers or to form ideals of powers are finitely generated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brodmann, M. and Sharp, R. Y.Local Cohomology: An Algebraic Introduction with Geometric Applications, (Cambridge University Press, 1998).Google Scholar
[2]Bruns, W. and Herzog, J.Cohen–Macaulay Rings. Revised Edition (Cambridge University Press, 1996).Google Scholar
[3]Conca, A., Herzog, J., Trung, N. V. and Valla, G.Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces. Amer. J. Math. 119 (1997), 859901.CrossRefGoogle Scholar
[4]Cowsik, R. C. and Nori, M. V.On the fibres of blowing up. J. Indian Math. Soc. 40 (1976), 217222.Google Scholar
[5]Cutkosky, S. D.Symbolic algebras of monomial primes. J. Reine Ange. Mathe. 416 (1991), 7189.Google Scholar
[6]Cutkosky, S. D. and Srinivasan, H.An intrinsic criterion for isomorphism of singularities Amer. J. Math. 115 (1993), 789821.CrossRefGoogle Scholar
[7]Cutkosky, S. D., Ein, L. and Lazarsfeld, R.Positivity and complexity of ideal sheaves. Math. Ann. 321 (2001), 213234.Google Scholar
[8]Cutkosky, S. D., Ha, H. T., Srinivasan, H. and Theodorescu, E.Asymptotic behaviour of the length of local cohomology. Canad. J. Math. 57 (2005), 11781192.CrossRefGoogle Scholar
[9]Cutkosky, S. D., Herzog, J. and Trung, N. V.Asymptotic behaviour of the Castelnuovo–Mumford regularity. Compositio Math. 118 (1999), 243261.Google Scholar
[10]Eisenbud, D. and Goto, S.Linear Free Resolutions and Minimal Multiplicity. J. Algebra 88 (1984), 89133.CrossRefGoogle Scholar
[11]Fujita, T.Semipositive line bundles. J. Fac. Sci. Univ. Tokyo 30 (1983), 353378.Google Scholar
[12]Fujita, T.Approximating Zariski decomposition of big line bundles. Kodai Math. J. 17 (1994), 13.Google Scholar
[13]Goto, S., Nishida, K. and Watanabe, K.Non-Cohen-Macaulay symbolic Rees algebras for space monomial curves and counterexamples to Cowsik's question. Proc. Amer. Math. Soc. 120 (1994), 383392.Google Scholar
[14]Herzog, J., Hibi, T. and Trung, N. V.Symbolic powers of monomial ideals and vertex cover algebras. Adv. Math. 210 (2007), 304322.Google Scholar
[15]Herzog, J., Putenpurakal, T. J. and Verma, J. K.Hilbert polynomials and powers of ideals. Math. Proc. Camb. Phil. Soc. 145 (2008), 623642.CrossRefGoogle Scholar
[16]Hironaka, H. On the equivalence of singularities, I. Arithmetical Algebraic Geometry, Proceedings, Schilling, O.F.G., ed. (Harper and Row, 1965) 153200.Google Scholar
[17]Huckaba, S.On linear equivalence of the P-adic and P-synbolic topologies. J. Pure Appl. Alg. 46 (1987), 179185.Google Scholar
[18]Hoang, N. D. and Trung, N. V.Hilbert polynomials of non-standard bigraded algebras. Math. Z. 245 (2003), 309334.CrossRefGoogle Scholar
[19]Huneke, C.On the finite generation of symbolic blow-ups. Math. Z. 179 (1982), 465472.CrossRefGoogle Scholar
[20]Huneke, C. and Swanson, I.Integral closures of ideals, rings and modules. London Math. Society Lecture Note Series 336 (Cambridge University Press, 2006).Google Scholar
[21]Katz, D.Prime divisors, asymptotic R-sequences and unmixed local rings. J. Alg. 95 (1985), 5971.CrossRefGoogle Scholar
[22]Katz, D. and Ratliff, L. J.On the symbolic Rees ring of a primary ideal. Comm. Alg. 14 (1986), 959970.Google Scholar
[23]Kirby, D.Hilbert functions and the extension functor. Math. Proc. Camb. Phil. Soc. 105 (1989), 441446.Google Scholar
[24]Kodiyalam, V.Asymptotic behaviour of Castelnuovo-Mumford regularity. Proc. Amer. Math. Soc. 128 (2000), 407411.Google Scholar
[25]Lazarsfeld, R.Positivity in Algebraic Geometry. (Springer Verlag, 2004).Google Scholar
[26]McAdam, S.Asymptotic prime divisors and analytic spreads. Proc. Amer. Math. Soc. 80 (1980), 555559.CrossRefGoogle Scholar
[27]Ratliff, L. J.Notes on essentially powers filtrations. Michigan Math. J. 26 (1979), 313324.Google Scholar
[28]Ratliff, L. J.On asymptotic prime divisors. Pacific J. Math. 111 (1984), 395413.Google Scholar
[29]Roberts, P. C.A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian. Proc. Amer. Math. Soc. 94 (1985), 589592.CrossRefGoogle Scholar
[30]Schenzel, P.Finiteness of relative Rees rings and asymptotic prime divisors. Math. Nachr. 129 (1986), 123148.Google Scholar
[31]Theodorescu, E.Derived functors and Hilbert Polynomials. Math. Proc. Camb. Phil. Soc. 132 (2002), 7588.Google Scholar
[32]Ulrich, B. and Validashti, J.A criterion for integral dependence of modules. Math. Res. Lett. 14 (2007), 10411054.Google Scholar
[33]Robbiano, L. and Valla, G.On the equations defining tangent cones. Math. Proc. Camb. Phil. Soc. 88 (1980), 281297.Google Scholar
[34]Verma, J.On ideals whose adic and symbolic topologies are linearly equivalent. J. Pure Appl. Alg. 47 (1987), 205212.CrossRefGoogle Scholar
[35]Waldi, R.Vollständige durchschnitte in Cohen–Macaulay-ringen. Arch. Math. 31 (1978), 439442.CrossRefGoogle Scholar