Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:22:57.279Z Has data issue: false hasContentIssue false

Bass number characterization of surjective Buchsbaum modules

Published online by Cambridge University Press:  24 October 2008

Kikumichi Yamagishi
Affiliation:
College of Liberal Arts, Himeji Dokkyo University, Kamiono 7-2-1, Himeji 670, Japan Dedicated to Sadako Yamagishi on her 70th birthday

Extract

Throughout this paper (A, m, k) denotes a Noetherian local ring and stands for the ith local cohomology functor with respect to m. We refer to [9] for unexplained terminology.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bass, H.. On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 828.CrossRefGoogle Scholar
[2]Foxby, H.-B.. A homological theory of complexes of modules. Preprint (1981).CrossRefGoogle Scholar
[3]Goto, S.. On Buchsbaum rings. J. Algebra 67 (1980), 272279.CrossRefGoogle Scholar
[4]Goto, S.. Buchsbaum rings of maximal embedding dimension. J. Algebra 76 (1982), 383399.CrossRefGoogle Scholar
[5]Goto, S.. On the surjectivity criterion for Buchsbaum modules. Proc. Amer. Math. Soc. 108 (1990), 641646.CrossRefGoogle Scholar
[6]Grothendieck, A.. Local Cohomology. Lecture Notes in Math. vol. 41 (Springer-Verlag, 1967).Google Scholar
[7]Herzog, J. and Kunz, E.. Der kanonische Modul eines Cohen–Macaulay–Rings. Lecture Notes in Math. vol. 238 (Springer-Verlag, 1971).CrossRefGoogle Scholar
[8]Herzog, J., Simis, A. and Vasconcelos, W. V.. Approximation complexes of blowing-up rings. J. Algebra 74 (1982), 466493.CrossRefGoogle Scholar
[9]Nagata, M.. Local Rings. Tracts in Pure and Appl. Math. no. 13 (Interscience, 1962).Google Scholar
[10]Roberts, P.. Homological invariants of modules over commutative rings. Séminaire de Math. Sup. no. 72 (Les Press de l'université de Montréal, 1980).Google Scholar
[11]Schenzel, P.. Dualisierende Komplexe in der lokalen Algebra und Buchsbaum–Ringe. Lecture Notes in Math. vol. 907 (Springer-Verlag, 1982).CrossRefGoogle Scholar
[12]Sharpe, D. W. and Vámos, P.. Injective Modules. Cambridge Tracts in Math. no. 62 (Cambridge University Press, 1972).Google Scholar
[13]Stückrad, J.. Über die kohomologische Charakterisierung von Buchsbaum-Moduln. Math. Nachr. 95 (1980), 265272.CrossRefGoogle Scholar
[14]Stückrad, J. and Vogel, W.. Eine Verallgemeinerung der Cohen–Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie. J. Math. Kyoto Univ. 13 (1973), 513528.Google Scholar
[15]Stückrad, J. and Vogel, W.. Toward a theory of Buchsbaum singularities. Amer. J. Math. 100 (1978), 727746.CrossRefGoogle Scholar
[16]Stückrad, J. and Vogel, W.. Buchsbaum Rings and Applications (Springer-Verlag, 1986).CrossRefGoogle Scholar
[17]Vasconcelos, W. V.. Ideals generated by R-sequences. J. Algebra 6 (1967), 309316.CrossRefGoogle Scholar
[18]Yamagishi, K.. Idealizations of maximal Buchsbaum modules over a Buchsbaum ring. Math. Proc. Cambridge Philos. Soc. 104 (1988), 451478.CrossRefGoogle Scholar