Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:22:02.107Z Has data issue: false hasContentIssue false

Blobbed topological recursion: properties and applications

Published online by Cambridge University Press:  27 May 2016

GAËTAN BOROT
Affiliation:
Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany. e-mail: gborot@mpim-bonn.mpg.de
SERGEY SHADRIN
Affiliation:
Korteweg de Vries Instituut voor Wiskunde, Universiteit van Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands. e-mail: s.shadrin@uva.nl

Abstract

We study the set of solutions (ωg,n )g⩾0,n⩾1 of abstract loop equations. We prove that ωg,n is determined by its purely holomorphic part: this results in a decomposition that we call “blobbed topological recursion”. This is a generalisation of the theory of the topological recursion, in which the initial data (ω0,1, ω0,2) is enriched by non-zero symmetric holomorphic forms in n variables (φg,n )2g−2+n>0. In particular, we establish for any solution of abstract loop equations: (1) a graphical representation of ωg,n in terms of φg,n ; (2) a graphical representation of ωg,n in terms of intersection numbers on the moduli space of curves; (3) variational formulas under infinitesimal transformation of φg,n ; (4) a definition for the free energies ωg,0 = Fg respecting the variational formulas. We discuss in detail the application to the multi-trace matrix model and enumeration of stuffed maps.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Arbarello, E., Cornalba, M. and Griffiths, P. II Geometry of algebraic curves. Grundlehren der mathematischen Wissenschaften. vol. 268 (Springer).Google Scholar
[2] Borot, G. Formal multidimensional integrals, stuffed maps, and topological recursion. Ann. Institut Poincaré D. 1 (2) (2014), 225264. math-ph/1307.4957.Google Scholar
[3] Borot, G. and Eynard, B. Geometry of spectral curves and all order dispersive integrable system. SIGMA. 8 (100) (2012). math-ph/1110.4936.Google Scholar
[4] Borot, G. and Eynard, B. Root systems, spectral curves, and analysis of a Chern–Simons matrix model for Seifert fibered spaces. (2016). To appear in Selecta Mathematica. math-ph/1407.4500.Google Scholar
[5] Borot, G. and Eynard, B. All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum Topology. (2015), math-ph/1205.2261.Google Scholar
[6] Borot, G., Eynard, B. and Orantin, N. Abstract loop equations, topological recursion, and applications. Commun. Number Theory and Physics. 9 (1) (2015), 51187.Google Scholar
[7] Borot, G. and Guionnet, A. Asymptotic expansion of β matrix models in the one-cut regime. Commun. Math. Phys. 317 (2) (2013), 447483. math-PR/1107.1167.Google Scholar
[8] Borot, G., Guionnet, A. and Kozlowski, K. Large-N asymptotic expansion for mean field models with Coulomb gas interaction. Inft. Math. Res. Nst. (2015). math-ph/1312.6664.Google Scholar
[9] Bouchard, V., Klemm, A., Mariño, M. and Pasquetti, S. Remodeling the B-model. Commun. Math. Phys. 287 (2009), 117178. hep-th/0709.1453.Google Scholar
[10] Brézin, É., Itzykson, C., Parisi, G. and Zuber, J.-B. Planar diagrams. Commun. Math. Phys. 59 (1978), 3551.Google Scholar
[11] Brini, A., Eynard, B. and Mariño, M. Torus knots and mirror symmetry. Ann. Henri Poincaré. (2012), hep-th/1105.2012.Google Scholar
[12] Dijkgraaf, R., Fuji, H. and Manabe, M. The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nucl. Phys. B. 849 (2011), 166211. hep-th/1010.4542.Google Scholar
[13] Dunin-Barkowski, P., Orantin, N., Shadrin, S. and Spitz, L. Identification of the Givental formula with the spectral curve topological recursion procedure. Commun. Math. Phys. 328 (2) (2014), 669700. math-ph/1211.4021.Google Scholar
[14] Eynard, B. Recursion between Mumford volumes of moduli spaces. Ann. Henri Poincaré. 12 (8) (2011), 14311447. math.AG/0706.4403.Google Scholar
[15] Eynard, B. Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory and Physics. 8 (3) (2014), math-ph/1110.2949.Google Scholar
[16] Eynard, B. Counting surfaces: combinatorics, matrix models and algebraic geometry. Progress in Mathematical Physics. vol. 114 (Birkhäuser, Basel, 2016). http://eynard.bertrand.voila.net/TOCbook.htm.Google Scholar
[17] Eynard, B. and Orantin, N. Invariants of algebraic curves and topological expansion. Commun. Number Theory and Physics. 1 (2) (2007), math-ph/0702045.Google Scholar
[18] Eynard, B. and Orantin, N. Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models. (2007), math-ph/0705.3600.Google Scholar
[19] Eynard, B. and Orantin, N. Topological expansion of mixed correlations in the hermitian 2 matrix model and x-y symmetry of the Fg invariants. J. Phys. A: Math. Theor. 41 (2008), math-ph/0705.0958.Google Scholar
[20] Eynard, B. and Orantin, N. Topological recursion in random matrices and enumerative geometry. J. Phys. A: Mathematical and Theoretical. 42 (29) (2009), math-ph/0811.3531.Google Scholar
[21] Eynard, B. and Orantin, N. Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. (2012), math-ph/1205.1103.Google Scholar
[22] Givental, A. B. Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1 (4) (2001), 551568, 645.Google Scholar
[23] Harer, J. and Zagier, D. The Euler characteristics of the moduli space of curves. Invent. Math. 85 (1986), 457485.Google Scholar
[24] Kontsevich, M. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147 (1992), 123.Google Scholar
[25] Mulase, M. and Dumitrescu, O. Quantum curves for Hitchin fibrations and the Eynard-Orantin theory. Lett. Math. Phys. 104 (2014), 635671. math.AG/1310.6022.Google Scholar
[26] Norbury, P. and Scott, N. Gromov–Witten invariants of P 1 and Eynard-Orantin invariants (2011). math.AG/1106.1337.Google Scholar
[27] Witten, E. Two dimensional gravity and intersection theory on moduli space. Surveys in Diff. Geom. 1 (1991), 243310.Google Scholar
[28] Zhou, J. Local mirror symmetry for the topological vertex (2009), math.AG/0911.2343.Google Scholar