No CrossRef data available.
Article contents
Characterizations of invariant distributions
Published online by Cambridge University Press: 24 October 2008
Abstract
Let (S, ρ) be a separable metric space and G a group of transformations of S. Necessary and sufficient conditions for a distribution on S to be invariant under G are derived in terms of the behaviour of the convolution of a random transformation from G and a random element of S.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 97 , Issue 2 , March 1985 , pp. 349 - 355
- Copyright
- Copyright © Cambridge Philosophical Society 1985
References
REFERENCES
[2]Driscoll, M. F.. On pairwise and mutual independence: characterizations of rectangular distributions. J. Amer. Statist. Assoc. 73 (1978), 432–433.Google Scholar
[4]Heyer, H.. Probability Measures on Locally Compact Groups. (Springer-Verlag. 1977).CrossRefGoogle Scholar
[5]Lévy, P.. L'addition des variables aléatoires définies sur une circonférence. Bull. Soc. Math. France, 67 (1939), 1–41.Google Scholar
[7]Rosenblatt, M.. Markov Processes. Structure and Asymptotic Behaviour. (Springer-Verlag, 1971).Google Scholar
[8]Segall, I. E. and Kunze, R. A.. Integrals and Operators. (McGraw-Hill, 1978).CrossRefGoogle Scholar
[9]Thornett, M. L.. The role of randomization in model-based inference. Austral. J. Statist. 24 (1982), 137–145.Google Scholar