Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:07:22.344Z Has data issue: false hasContentIssue false

Coefficient inequalities for analytic functions in H1

Published online by Cambridge University Press:  24 October 2008

Rainer Wittmann
Affiliation:
Institut für Mathematische Stochastik der Universität Göttingen, Lotzestr. 13, D-37083 Göttingen, Germany. e-mail address: rw@namu01.gwdg.de

Abstract

Improving earlier result of Hardy and Littlewood[1] and McGehee, Pigno and Smith[2] we show for analytic functions on the unit disc that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hardy, G. H. and Littlewood, J. E.. Some new properties of Fourier constants. Math. Ann. 97 (1926), 159209.CrossRefGoogle Scholar
[2]McGehee, O. C., Pigno, L. and Smith, B.. Hardy's inequality and the L 1 norm of exponential sums. Ann. Math. 113 (1981), 613618.Google Scholar
[3]Stegeman, J. D.. On the Constant in the Littlewood problem. Math. Ann. 261 (1982), 5154.CrossRefGoogle Scholar
[4]Wittmann, R.. A general law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Geb. 68 (1985), 521543.CrossRefGoogle Scholar
[5]Yabuta, K.. A remark on the Littlewood conjecture. Bull. Fac. Sci. Ibaraki Univ. 14 (1982), 1921.Google Scholar
[6]Zygmund, A.. Trigonometrie series (Cambridge University Press, 1968).Google Scholar