Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T01:48:17.220Z Has data issue: false hasContentIssue false

A cohomological characterization of amenable actions

Published online by Cambridge University Press:  24 October 2008

C. Anantharaman-Delaroche
Affiliation:
Université d'orléans, Département de Mathématiques et d'informatique, B.P. 6759, 45067 Orleans Cedex 2, France

Abstract

We give a new characterization of amenability for dynamical systems, in cohomological terms, which generalizes the classical characterization of amenable locally compact groups stated by Johnson.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anantharaman-Delaroche, C.. Action moyennable d'un groupe localement compact surune algèbre de von Neumann. Math. Scand. 45 (1979), 289304.CrossRefGoogle Scholar
[2]Anantharaman-Delaroche, C.. Action moyennable d'un groupe localement compact surune algèbre de von Neumann. II. Math. Scand. 50 (1982), 251268.CrossRefGoogle Scholar
[3]Anantharaman-Delaroche, C.. Systèmes dynamiques non commutatifs et moyennabilité. Math. Ann. 279 (1987), 297315.CrossRefGoogle Scholar
[4]Anantharaman-Delaroche, C.. On relative amenability for von Neumann algebras. Compositio Math. 74 (1990), 333352.Google Scholar
[5]Connes, A.. On the cohomology of operator algebras. J. Fund. Anal. 28 (1978), 248253.CrossRefGoogle Scholar
[6]Guichardet, A.. Cohomologie des Groupes Topologiques el des Algèbres de Lie (Cedic, Fernand Nathan, 1980).Google Scholar
[7]Haagerup, U.. The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271283.CrossRefGoogle Scholar
[8]Haagerup, U.. All nuclear C*-algebras are amenable. Invent. Math. 74 (1983), 305319.CrossRefGoogle Scholar
[9]Ionescu-Tulcea, A. and Ionescu-Tulcea, C.. Topics in the Theory of Liftings. Ergebnisse der Mathematik no. 48 (Springer-Verlag, 1969).CrossRefGoogle Scholar
[10]Johnson, B. E.. Cohomology of Banach Algebras. Memoirs Amer. Math. Soc. no. 127 (American Mathematical Society, 1972).CrossRefGoogle Scholar
[11]Kadison, R. V. and Ringrose, J. R.. Fundamentals of the Theory of Operator Algebras, vol. 2 (Academic Press, 1986).Google Scholar
[12]Paschke, W. L.. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443468.Google Scholar
[13]Roberts, J. E.. New light on the mathematical structure of algebraic field theory. Proc. Sympos. Pure Math. 38 (1982), 523550.CrossRefGoogle Scholar
[14]Sakai, S.. C*-algebras and W*-algebras. Ergebnisse der Mathematik no. 60 (Springer-Verlag, 1971).Google Scholar
[15]Schatten, R.. A Theory of Cross-Spaces. Ann. of Math. Studies no. 26 (Princeton University Press, 1950).Google Scholar
[16]Takesaki, M.. Theory of Operator Algebras, vol. 1 (Springer-Verlag, 1979).CrossRefGoogle Scholar
[17]Takesaki, M.. On the Hahn–Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras. Kōdai Math. Sent. Rep. 12 (1960), 110.Google Scholar
[18]Zimmer, R. J.. Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Fund. Anal. 27 (1978), 350372.CrossRefGoogle Scholar
[19]Zimmer, R. Z.. On the von Neumann algebra of an ergodic group action. Proc. Amer. Math. Soc. 66 (1977), 289293.CrossRefGoogle Scholar
[20]Zimmer, R. J.. Ergodic Theory of Semisimple Groups (Birkhäuser, 1984).CrossRefGoogle Scholar