Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T06:14:35.208Z Has data issue: false hasContentIssue false

Compact multipliers on weighted hypergroup algebras. II

Published online by Cambridge University Press:  24 October 2008

F. Ghahramani
Affiliation:
Department of Mathematics, Teacher Training University, Tehran, Iran
A. R. Medgalchi
Affiliation:
Department of Mathematics, Teacher Training University, Tehran, Iran

Extract

In [7] we gave a description of compact multipliers of Lω(X), and left open the question of whether weakly compact multipliers on Lω(X) are compact. This had already been answered for some examples of hypergroup algebras ([1], [2], [6] and [10]). Here we give a positive answer to this question in the general setting of a weighted hypergroup algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akemann, C.. Some mapping properties of the group algebra of a compact group. Pacific J. Math. 22 (1967), 18.CrossRefGoogle Scholar
[2]Bade, W. G. and Dales, H. O.. Norms and ideals in radical convolution algebras. J. Functional Analysis 41 (1981), 77109.CrossRefGoogle Scholar
[3]Dieundonné, J.. Sur la convergence des suites de mesures de Radon. Anais Acad. Brasil Cienc. 23 (1951), 2138.Google Scholar
[4]Dunford, N. and Schwartz, J.. Linear Operators, part 1 (Interscience, 1958).Google Scholar
[5]Dunkl, F.The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc. 179 (1973), 331348.CrossRefGoogle Scholar
[6]Ghahramani, F.. Weighted group algebra as an ideal in its second dual space. Proc. Amer. Math. Soc. 90 (1984), 7176.CrossRefGoogle Scholar
[7]Ghahramani, F. and Medgalchi, A. R.. Compact multipliers on weighted bypergroup algebras. Math. Proc. Cambridge Philos. Soc. 98 (1985), 493500.CrossRefGoogle Scholar
[8]Grothendieck, A.. Critéres de compacité dans les espaces fonctionnels gnéraux. Amer. J. Math. 74 (1952), 168186.CrossRefGoogle Scholar
[9]Grothendieck, A.. Sur les applications linéaires faiblement compactes des espaces du type C(K). Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
[10]Sakai, S.. Weakly compact operators on operator algebras. Pacific J. Math. 14 (1964), 659664.CrossRefGoogle Scholar