Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-16T16:14:31.903Z Has data issue: false hasContentIssue false

Completely positive maps which are compact from L to L1

Published online by Cambridge University Press:  28 June 2011

James A. Mingo
Affiliation:
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, K7L 3N6

Abstract

We define a class of completely positive maps, closed under composition, on a von Neumann algebra. We show that when the algebra has no atomic part, the correspondences associated to this class of completely positive maps are disjoint from the identity correspondence. This enables one simultaneously to generalize the statement and simplify the proof of a theorem of A. Connes and V. F. R. Jones on factors of type II1 with property T.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akemann, C. A.. The dual space of an operator algebra. Trans. Amer. Math. Soc. 126 (1967), 285302.CrossRefGoogle Scholar
[2] Akemann, C. A. and Walter, M. E.. Unbounded negative definite functions. Canad. J. Math. 33 (1981), 862871.CrossRefGoogle Scholar
[3] Ananthakaman-Dblaroche, C.. On relative amenability for von Neumann algebras. (Preprint, 1987.)Google Scholar
[4] Anantharaman-Delabochb, C. and Havet, J. F.. On approximate factorizations of completely positive maps. (Preprint, 1988.)Google Scholar
[5] Canniere, J. De and Haagerup, U.. Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107 (1985), 455500.CrossRefGoogle Scholar
[6] Connes, A.. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. (4) 6 (1973), 133252.CrossRefGoogle Scholar
[7] Connes, A.. Almost periodic states and factors of type III 1 J. Fund. Anal. 16 (1974), 415445.CrossRefGoogle Scholar
[8] Connes, A. Classification of injective factors. Ann. of Math. (2) 104 (1976), 73115.Google Scholar
[9] Connes, A. and Jones, V. F. R.. Property T for von Neumann algebras. Bull. London Math. Soc. 17 (1985), 5762.CrossRefGoogle Scholar
[10] Connes, A., Narnhöfer, H. and Thirring, W.. Dynamical entropy of C*-algebras and von Neumann algebras. Comm. Math. Phys. 112 (1987), 691719.CrossRefGoogle Scholar
[11] Connes, A. and Størmer, E.. Homogeneity of the state spaces of factors of type III 1. J. Funct. Anal. 28 (1978), 187196.CrossRefGoogle Scholar
[12] Delaroche, C. and Kirillov, A.. Sur les relations entre l'éspace dual d'un groupe et la structure de ses sous-groupes fermés. Seminaire Boubaki, no. 343, juin 1968 (W.A. Benjamin, 1969).Google Scholar
[13] Dell'Antonio, G. F.. On the limits of sequences of normal states. Comm. Pure Appl. Math. 20 (1967), 413429.CrossRefGoogle Scholar
[14] Effros, E. G. and Lance, E. C.. Tensor products of operator algebras. Adv. inMath. 25 (1977), 134.Google Scholar
[15] Eymard, P.. L'Algébre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92 (1964), 181236.CrossRefGoogle Scholar
[16] Eymard, P.. Moyennes Invariantes et Representations Unitaires. Lecture Notes in Math. vol. 300 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[17] Fell, J. M. G.. Weak containment and induced representations of groups. Canad. J.Math. 14 (1962), 237268.CrossRefGoogle Scholar
[18] Haagbrup, U.. The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271283.CrossRefGoogle Scholar
[19] Haagercp, U.. An example of a non nuclear C*-algebra which has the metric approximation property. Invent. Math. 50 (1979), 279293.CrossRefGoogle Scholar
[20] Halmos, P.. Measure Theory. Graduate Texts in Math. no. 18 (Springer-Verlag, 1974).Google Scholar
[21] Kadison, R. V.. States and representations. Trans. Amer. Math. Soc. 103 (1962), 304319.CrossRefGoogle Scholar
[22] Kadison, R. V.. Transformations of states in operator theory and dynamics. Topology 3, Suppl. 2 (1965), 177198.CrossRefGoogle Scholar
[23] Kadison, R. V. and Ringrose, J. R.. Fundamentals of the Theory of Operator Algebras, vol. 2 (Academic Press, 1986).Google Scholar
[24] Lance, E. C.. On nuclear C*-algebras. J. Fund. Anal. 12 (1973), 157176.CrossRefGoogle Scholar
[25] Lang, S.. SL2(ℝ). (Addison-Wesley, 1975.)Google Scholar
[26] Mingo, J. A.. Weak containment of correspondences and approximate factorization of completely positive maps. J. Fund. Anal, (to appear).Google Scholar
[27] Mingo, J. A.. The correspondence associated to an inner completely positive map. Math. Ann. (to appear).Google Scholar
[28] Popa, S.. Correspondences. (Preliminary version, 1986.)Google Scholar
[29] Robertson, A. G.. Strong non-amenability of II1 factors with property T. Bull. Land. Math. Soc. 20 (1988), 5153.CrossRefGoogle Scholar
[30] Takesaki, M.. Tomita's Theory of Modular Hilbert Algebras and its Applications. Lecture Notes in Math. vol. 128 (Springer-Verlag, 1970).CrossRefGoogle Scholar
[31] Takesaki, M.. Theory of Operator Algebras, vol. 1 (Springer-Verlag, 1979).Google Scholar