Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T08:45:03.329Z Has data issue: false hasContentIssue false

Complex convexity and the geometry of Banach spaces

Published online by Cambridge University Press:  24 October 2008

S. J. Dilworth
Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, TX 78712, U.S.A.

Extract

The notion of PL-convexity was introduced in [4]. In the present article several results are proved which related PL-convexity to various aspects of the geometry of Banach spaces. The first section introduces the moduli of comples convexity and makes a comparison with the more familiar modulus of uniform convexity. It is shown that unconditional convergence of implies convergence of . In the next section the moduli and are shown to be related. The method of proof gives rise to a theorem about strict c-convexity of Lp(X) and a result on the representability in Lp(X).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bergh, J. and Löfstrom, J.. Interpolation Spaces: An Introduction (Springer-Verlag, 1976).CrossRefGoogle Scholar
[2]Bukhvalov, A. V. and Danilevich, A.. Boundary properties of analytic and harmonic functions with values in Banach space. Math. Notes 31 (1982), 104110. (translated from Russian).CrossRefGoogle Scholar
[3]Cwikel, M. and Reisner, S.. Interpolation of uniformly convex Banach spaces. Proc. Amer. Math. Soc. 84 (1982), 555559.CrossRefGoogle Scholar
[4]Davis, W. J., Garling, D. J. H. and Tomczak-Jaegermann, N.. The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55 (1984), 110150.CrossRefGoogle Scholar
[5]Diestel, J.. Sequences and Series in Banach Spaces (Springer-Verlag, 1984).CrossRefGoogle Scholar
[6]Dowling, P. N.. Representable operators and the analytic Radon-Nikodým property in Banach spaces (to appear).Google Scholar
[7]Figiel, T. A. and Tomczak-Jaegermann, N.. Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math. 33 (1979), 155171.Google Scholar
[8]Globevnik, J.. On complex strict and uniform convexity. Proc. Amer. Math. Soc. 47 (1975), 175178.CrossRefGoogle Scholar
[9]Istratescu, V. I. and Istratescu, I. I.. On complex strictly convex spaces. I. J. Math. Anal.Appl. 70 (1979), 423429.CrossRefGoogle Scholar
[10]Istratescu, V. I.. On complex strictly convex spaces. II. J. Math. Anal. Appl. 71 (1979), 580589.CrossRefGoogle Scholar
[11]Krivine, J. L.. Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. Math. 104 (1976), 129.CrossRefGoogle Scholar
[12]Kwapien, S.. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44 (1972), 583595.CrossRefGoogle Scholar
[13]Lewis, D. R.. Ellipsoids defined by Banach ideal norms. Mathematika 26 (1979), 1829.CrossRefGoogle Scholar
[14]Lindenstrauss, J. and Pe£czynski, A.. Absolutely summing operators in LD-spaces and their applications. Studia Math. 29 (1968), 275326.CrossRefGoogle Scholar
[15]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces. I (Springer-Verlag, 1977).CrossRefGoogle Scholar
[16]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces. II (Springer-Verlag, 1979).CrossRefGoogle Scholar
[17]Maurey, B. and Pisier, G.. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58 (1976), 45–90.CrossRefGoogle Scholar
[18]Pisier, G.. Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975), 326350.CrossRefGoogle Scholar
[19]Thorp, E. and Whitley, R.. The strong maximum modulus theorem for analytic functions into a Banach space. Proc. Amer. Math. Soc. 18 (1967), 640646.CrossRefGoogle Scholar
[20]Tokarev, E. V.. On c-convex Banach Iattices. Funct. Anal. Appl. 15 (1981), 9091 (translated from Russian).CrossRefGoogle Scholar