Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T13:25:25.469Z Has data issue: false hasContentIssue false

Cubulating one-relator groups with torsion

Published online by Cambridge University Press:  25 July 2013

JOSEPH LAUER
Affiliation:
Dept. of Mathematics & Statistics, McGill University, Montreal, QC, Canada. e-mail: lauer@math.mit.edu, wise@math.mcgill.ca
DANIEL T. WISE
Affiliation:
Dept. of Mathematics & Statistics, McGill University, Montreal, QC, Canada. e-mail: lauer@math.mit.edu, wise@math.mcgill.ca

Abstract

Let 〈a1, . . ., amwn〉 be a presentation of a group G, where n ≥ 2. We define a system of codimension-1 subspaces in the universal cover, and invoke Sageev's construction to produce an action of G on a CAT(0) cube complex. We show that the action is proper and cocompact when n ≥ 4. A fundamental tool is a geometric generalization of Pride's C(2n) small-cancellation result. We prove similar results for staggered groups with torsion.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brodskiĭ, S. D.Equations over groups, and groups with one defining relation. Sibirsk. Mat. Zh. 25 (2) (1984), 84103.Google Scholar
[2]Fischer, J., Karrass, A. and Solitar, D.On one-relator groups having elements of finite order. Proc. Amer. Math. Soc. 33 (1972), 297301.CrossRefGoogle Scholar
[3]Gromov, M.Hyperbolic groups. In Essays in Group Theory, vol. 8 Math. Sci. Res. Inst. Publ. (Springer, New York, 1987), pages 75263.CrossRefGoogle Scholar
[4]Howie, J.On pairs of 2-complexes and systems of equations over groups. J. Reine Angew. Math. 324 (1981), 165174.Google Scholar
[5]Howie, J.On locally indicable groups. Math. Z. 180 (4) (1982), 445461.CrossRefGoogle Scholar
[6]Howie, J.How to generalize one-relator group theory. In Gersten, S. M. and Stallings, J. R., editors, Combinatorial group theory and topology (Princeton, N.J., 1987), pages 5378. Princeton University Press.CrossRefGoogle Scholar
[7]Hruska, G. C. and Wise, D. T. Finiteness properties of cubulated groups. Compositio Math. pp. 1–58, to appear.Google Scholar
[8]Hruska, G. C. and Wise, D. T.Towers, ladders and the B. B. Newman spelling theorem. J. Aust. Math. Soc. 71 (1) (2001), 5369.CrossRefGoogle Scholar
[9]Lyndon, R. C. and Schupp, P. E.Combinatorial group theory. Springer-Verlag, Berlin, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89.Google Scholar
[10]Magnus, W.Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz). J. Reine Angew. Math. 163 (1930), 141165.CrossRefGoogle Scholar
[11]Newman, B. B.Some results on one-relator groups. Bull. Amer. Math. Soc. 74 (1968), 568571.CrossRefGoogle Scholar
[12]Pride, S. J.Small cancellation conditions satisfied by one-relator groups. Math. Z. 184 (2) (1983), 283286.CrossRefGoogle Scholar
[13]Sageev, M.Ends of group pairs and non-positively curved cube complexes. Proc. London Math. Soc. (3) 71 (3) (1995), 585617.CrossRefGoogle Scholar
[14]Sageev, M.Codimension-1 subgroups and splittings of groups. J. Algebra 189 (2) (1997), 377389.CrossRefGoogle Scholar
[15]Short, H.Quasiconvexity and a theorem of Howson's. In Ghys, É., Haefliger, A. and Verjovsky, A., editors, Group theory from a geometrical viewpoint (Trieste, 1990) (World Scientific Publishing, River Edge, NJ, 1991), pages 168176.Google Scholar
[16]Weinbaum, C. M.On relators and diagrams for groups with one defining relation. Illinois J. Math. 16 (1972), 308322.CrossRefGoogle Scholar
[17]Wise, D. T.Cubulating small cancellation groups. GAFA, Geom. Funct. Anal. 14 (1) (2004), 150214.CrossRefGoogle Scholar