Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T18:01:35.790Z Has data issue: false hasContentIssue false

The distribution of αp modulo one

Published online by Cambridge University Press:  01 September 2009

KAISA MATOMÄKI*
Affiliation:
Department of Mathematics, 20014 University of Turku, Finland. e-mail: ksmato@utu.fi

Abstract

We prove that, for any irrational number α, there are infinitely many primes p such that ∥αp∥ < p−1/3+ε. Here ∥y∥ denotes the distance from y to the nearest integer. The proof uses Harman's sieve method with arithmetical information coming from bounds for averages of Kloosterman sums.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Deshouillers, J. M. and Iwaniec, H.Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70 (1982), 219288.CrossRefGoogle Scholar
[2]Harman, G.On the distribution of α p modulo one I. J. London Math. Soc. (2) 27 (1983), 918.CrossRefGoogle Scholar
[3]Harman, G.On the distribution of α p modulo one II. Proc. London Math. Soc. (3) 72 (1996), 241260.CrossRefGoogle Scholar
[4]Harman, G.Prime-detecting Sieves, volume 33 of London Mathematical Society Monographs (New Series) (Princeton University Press, 2007).Google Scholar
[5]Harman, G., Watt, N. and Wong, K. C.A new mean-value result for Dirichlet L-functions and polynomials. Quart. J. Math. 55 (2004), 307324.CrossRefGoogle Scholar
[6]Heath-Brown, D. R.Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34 (1982), 13651377.CrossRefGoogle Scholar
[7]Heath-Brown, D. R. and Jia, C.The distribution of α p modulo one. Proc. London Math. Soc. (3) 84 (2002), 79104.CrossRefGoogle Scholar
[8]Iwaniec, H. and Kowalski, E.Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications (American Mathematical Society, 2004).Google Scholar
[9]Jia, C. On the distribution of α p modulo one. In Number theoretic methods (Iizuka, 2001), volume 8 of Dev. Math., pages 151157 (Kluwer Academic Publishers, 2002).CrossRefGoogle Scholar
[10]Kim, H. H. (with appendices by Ramakrishnan, D., Kim, H. H. and Sarnak, P.). Functoriality for the exterior square of GL 4 and the symmetric square of GL 2. J. Amer. Math. Soc. 16 (2003), 139183.CrossRefGoogle Scholar
[11]Vaughan, R. C.On the distribution of α p modulo 1. Mathematika 24 (1977), 135141.CrossRefGoogle Scholar
[12]Vinogradov, I. M.The Method of Trigonometric Sums in the Theory of Numbers. Translated from the Russian revised and annotated by Roth, K. F. and Davenport, A. (Wiley-Interscience, 1954).Google Scholar
[13]Watt, N.Kloosterman sums and a mean value for Dirichlet polynomials. J. Number Theory 53 (1995), 179210.CrossRefGoogle Scholar