Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T21:46:24.352Z Has data issue: false hasContentIssue false

Exceptional sets for self-similar fractals in Carnot groups

Published online by Cambridge University Press:  24 March 2010

ZOLTÁN M. BALOGH
Affiliation:
Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland. e-mail: zoltan.balogh@math.unibe.ch, reto.berger@math.unibe.ch
RETO BERGER
Affiliation:
Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland. e-mail: zoltan.balogh@math.unibe.ch, reto.berger@math.unibe.ch
ROBERTO MONTI
Affiliation:
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste, 63 35121 Padova, Italy. e-mail: monti@math.unipd.it
JEREMY T. TYSON
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign 1409 West Green St., Urbana, IL 61801, U.S.A. e-mail: tyson@math.uiuc.edu

Abstract

We consider self-similar iterated function systems in the sub-Riemannian setting of Carnot groups. We estimate the Hausdorff dimension of the exceptional set of translation parameters for which the Hausdorff dimension in terms of the Carnot–Carathéodory metric is strictly less than the similarity dimension. This extends a recent result of Falconer and Miao from Euclidean space to Carnot groups.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Balogh, Z. M., Hoefer-Isenegger, R. and Tyson, J. T.Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group. Ergodic Theory Dynam. Systems, 26, 3(2006), 621651.CrossRefGoogle Scholar
[2]Balogh, Z. M. and Rohner, H. Self-similar sets in doubling spaces. Illinois J. Math (2007), 1275–1297.CrossRefGoogle Scholar
[3]Balogh, Z. M. and Tyson, J. T.Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group. Proc. London Math. Soc. (3) 91, 1 (2005), 153183.CrossRefGoogle Scholar
[4]Balogh, Z. M., Tyson, J. T. and Warhurst, B.Gromov's dimension comparison problem on Carnot groups. C. R. Math. Acad. Sci. Paris 346, 34 (2008), 135138.CrossRefGoogle Scholar
[5]Balogh, Z. M., Tyson, J. T. and Warhurst, B.Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups. Adv. Math. 220, 2 (2009), 560619.CrossRefGoogle Scholar
[6]Bonfiglioli, A., Lanconelli, E. and Uguzzoni, F.Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Math. (Springer, Berlin, 2007).Google Scholar
[7]Corwin, L. J. and Greenleaf, F. P.Representations of nilpotent Lie groups and their applications. Cambridge Studies in Adv. Math. Part I, vol. 18 (Cambridge University Press, 1990).Google Scholar
[8]Falconer, K. and Miao, J.Exceptional sets for self-affine fractals. Math. Proc. Camb. Phil. Soc. 145, 3 (2008), 669684.CrossRefGoogle Scholar
[9]Falconer, K. J.The geometry of fractal sets, Cambridge Tracts in Mathematics. (Cambridge University Press, 1986) vol. 85.Google Scholar
[10]Falconer, K. J.The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 339350.CrossRefGoogle Scholar
[11]Falconer, K. J.Fractal geometry. Mathematical Foundations and Applications. (John Wiley and Sons Ltd., 1990).Google Scholar
[12]Falconer, K. J.The dimension of self-affine fractals. II. Math. Proc. Camb. Phil. Soc. 111 (1992), 169179.CrossRefGoogle Scholar
[13]Folland, G. B. and Stein, E. M.Hardy Spaces on Homogeneous Groups. (Princeton University Press, 1982).Google Scholar
[14]Gromov, M.Carnot–Carathéodory spaces seen from within. In Sub-Riemannian Geomet. Progr. Math. 144 (1996), pp. 79323.CrossRefGoogle Scholar
[15]Hutchinson, J. E.Fractals and self-similarity. Indiana Univ. Math. J. 30, 5 (1981), 713747.CrossRefGoogle Scholar
[16]Kigami, J.Analysis on fractals. Cambridge Tracts in Mathematics. Cambridge University Press, 2001 vol. 143.CrossRefGoogle Scholar
[17]Mattila, P.Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics. (Cambridge University Press, 1995). Fractals and rectifiability.CrossRefGoogle Scholar
[18]Mattila, P.Measures with unique tangent measures in metric groups. Math. Scand. 97, 2 (2005), 298308.CrossRefGoogle Scholar
[19]Mattila, P., Serapioni, R. and Serra Cassano, F. Characterizations of intrinsic rectifiability in Heisenberg groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). to appear.Google Scholar
[20]Montgomery, R.A tour of subriemannian geometries, their geodesics and applications. No. 91 in Mathematical Surveys and Monographs (Amer. Math. Soc., 2002).Google Scholar
[21]Peres, Y. and Schlag, W.Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 2 (2000), 193251.CrossRefGoogle Scholar
[22]Solomyak, B.Measure and dimension for some fractal families. Math. Proc. Camb. Phil. Soc. 124, 3 (1998), 531546.CrossRefGoogle Scholar
[23]Strichartz, R. S.Self-similarity on nilpotent Lie groups. In Geometric analysis (Philadelphia, PA, 1991), Contemp. Math. 140 (1992), pp. 123157.CrossRefGoogle Scholar