No CrossRef data available.
Article contents
Extensions of tensor categories by finite group fusion categories
Published online by Cambridge University Press: 11 November 2019
Abstract
We study exact sequences of finite tensor categories of the form Rep G → 𝒞 → 𝒟, where G is a finite group. We show that, under suitable assumptions, there exists a group Γ and mutual actions by permutations ⊳ : Γ × G → G and ⊲ : Γ × G→ Γ that make (G, Γ) into matched pair of groups endowed with a natural crossed action on 𝒟 such that 𝒞 is equivalent to a certain associated crossed extension 𝒟(G,Γ) of 𝒟. Dually, we show that an exact sequence of finite tensor categories VecG → 𝒞 → 𝒟 induces an Aut(G)-grading on 𝒞 whose neutral homogeneous component is a (Z(G), Γ)-crossed extension of a tensor subcategory of 𝒟. As an application we prove that such extensions 𝒞 of 𝒟 are weakly group-theoretical fusion categories if and only if 𝒟 is a weakly group-theoretical fusion category. In particular, we conclude that every semisolvable semisimple Hopf algebra is weakly group-theoretical.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 170 , Issue 1 , January 2021 , pp. 161 - 189
- Copyright
- © Cambridge Philosophical Society 2019
Footnotes
Partially supported by CONICET and SeCY-UNC.