Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T07:13:14.225Z Has data issue: false hasContentIssue false

A family of elliptic curves and cyclic cubic field extensions*

Published online by Cambridge University Press:  24 October 2008

E. Thomas
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720
A.T. Vasquez
Affiliation:
Graduate School CUNY, 33W. 42nd St., New York, NY 10036

Extract

Let K be a field with char K ≡ 2,3. We consider the problem of finding rational points over K on the family of elliptic curves Fλ, given in homogeneous coordinates (over ) by

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Caldwell, C.. Thesis, University of California (Berkeley), 1984.Google Scholar
[2] Craig, M.. Integer values of H(x*/yz). J. Number Theory 10 (1978), 6263.CrossRefGoogle Scholar
[3] Dofs, E.. On some classes of homogeneous ternary cubic diophantine equations. Ark. Mat. 13 (1975), 2972.CrossRefGoogle Scholar
[4] Hubwitz, A.. Über ternare diophantische Gleichungen dritten Grades. Math. Werke, 2 (Birk-hauser, 1933), 446468.Google Scholar
[5] Milnor, J. and Stasheff, J.. Characteristic classes. Annals of Math. Studies, vol. 76 (Princeton University Press, 1974).CrossRefGoogle Scholar
[6] Mordell, L.. Diophantine Equations. (Academic Press, 1969).Google Scholar
[7] Mordell, L.. On the rational solutions of the indeterminate equations of the 3rd and 4th degree. Proc. Cambridge Philos. Soc. 21 (1922), 179192.Google Scholar
[8] Mordell, L.. The diophantine equation x3 + y3 + z3 + kxyz = 0. Colloque sur la thiorie des nombres (Bruxelles, 1955), 6776.Google Scholar
[9] Thomas, E. and Vasqtjez, A.. Diophantine equations arising from cubic number fields. J. Number Theory 13 (1981), 398414.CrossRefGoogle Scholar
[10] Weil, A.. L'arithmetique sur les courbes algébriqes. Acta Math. 52 (1929), 281315.Google Scholar