Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T07:11:46.896Z Has data issue: false hasContentIssue false

Finite groups of matrices over division rings

Published online by Cambridge University Press:  24 October 2008

B. Hartley
Affiliation:
University of Manchester and University of Tabriz, Iran
M. A. Shahabi Shojaei
Affiliation:
University of Manchester and University of Tabriz, Iran

Extract

A classical theorem of Jordan and Schur states that if G is a finite group of s × s matrices over a field K whose characteristic does not divide |G|, then G has an abelian subgroup of index bounded by a function of s. There are several direct and elegant proofs of this, leading to explicit bounds (4), (18).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Amitsur, S. A.Finite subgroups of division rings. Trans. Amer. Math. Soc. 80 (1955), 361386.CrossRefGoogle Scholar
(2)Blackburn, N. and Huppert, B.Finite groups II (Springer-Verlag, Berlin, Heidelberg, New York, 1982).Google Scholar
(3)Carter, R. W.Simple groups of Lie type (Interscience, New York, 1972).Google Scholar
(4)Curtis, C. W. and Reiner, I.Representation theory of finite groups and associative algebras (Interscience, New York, 1962).Google Scholar
(5)Dornhoff, L.Group representation theory. Part A (Marcel Dekker, New York, 1972).Google Scholar
(6)Gorčakov, Ju. M.The existence of abelian subgroups of infinite rank in locally soluble groups. Dokl. Akad. Nauk SSSR 156 (1964), 1720 (Russian);Google Scholar
Gorčakov, Ju. M.The existence of abelian subgroups of infinite rank in locally soluble groups. Soviet Math. Dokl. 5 (1964), 591594.Google Scholar
(7)Griess, R.Schur multipliers of finite simple groups of Lie type. Trans. Amer. Math. Soc. 183 (1973), 355421.CrossRefGoogle Scholar
(8)Hartley, B.Finite groups of automorphisms of locally soluble groups. J. Algebra 57 (1979), 242257.CrossRefGoogle Scholar
(9)Huppert, B.Endliche Gruppen I (Springer-Verlag, Berlin-Heidelberg-New York, 1967).CrossRefGoogle Scholar
(10)Isaacs, I. M.Character theory of finite groups (Interscience, New York, 1976).Google Scholar
(11)Janusz, G.Simple components of Q[SL(2, q)]. Comm. Algebra 1 (1974), 122.CrossRefGoogle Scholar
(12)Kargapolov, M. I.Some problems in the theory of nilpotent and soluble groups. Dokl. Akad. Nauk SSSR 127 (1959), 11641166.Google Scholar
(13)Kegel, O. H. and Wehrfritz, B. A. F.Locally finite groups (North Holland, Amsterdam, 1973).Google Scholar
(14) Kourov Notebook (Unsolved problems in group theory), Seventh Edition (Mathematics Institute, Siberian Division of the U.S.S.R. Academy of Sciences, Novosibirsk, 1980).Google Scholar
(15)Passman, D. S.The algebraic structure of group rings (Interscience, New York, 1977).Google Scholar
(16)Shahabi, Shojaei M. A. Arch. Math., to appear.Google Scholar
(17)Šunkov, V. P.Locally finite groups of finite rank. Algebra i Logika 10 (1971), 199225 (Russian); Algebra and Logic 10 (1971), 127–142.Google Scholar
(18)Wehrfritz, B. A. F.Infinite linear groups (Springer-Verlag, Berlin-Heidelberg-New York, 1973).CrossRefGoogle Scholar
(19)Zalesskiiˇ, A. E.The structure of some classes of matrix groups over a division ring. Sibirsk. Mat. Zh. 8 (1967), 1284–1298 (Russian); Siberian Math. J. 8 (1967), 978–987.Google Scholar