Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T22:26:52.906Z Has data issue: false hasContentIssue false

Finite quasisimple groups of 2×2 matrices over a division ring

Published online by Cambridge University Press:  24 October 2008

B. Hartley
Affiliation:
Unïversity of Manchester and University of Tabriz, Iran
M. A. Shahabi Shojaei
Affiliation:
Unïversity of Manchester and University of Tabriz, Iran

Extract

In 1955 [1], Amitsur determined all the finite groups G that can be embedded in the multiplicative group T* = GL(1, T) of some division ring T of characteristic zero. If G can be so embedded, then the rational span of G in T is a division ring of finite dimension over ℚ, and G acts on it by right multiplication in such a way that every non-trivial element operates fixed point freely. The finite groups admitting such a representation had earlier been determined by Zassenhaus[24; 4, XII. 8], and Amitsur begins by quoting Zassenhaus' results, which show in particular that the only perfect group that can be embedded in the multiplicative group of a division ring of characteristic zero is SL(2,5). The more difficult part of Amitsur's paper is the determination of the possible soluble groups. Here the main tool is Hasse's theory of cyclic algebras over number fields.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Amitsur, S. A.. Finite subgroups of division rings. Trans. Amer. Math. Soc. 80 (1955), 361386.CrossRefGoogle Scholar
[2]Banieqbal, B.. Finite groups of matrices over division rings. Ph.D. thesis, University of Manchester, 1984.Google Scholar
[3]Blackburn, N.. The extension theory of the symmetric and alternating groups. Math. Z. 117 (1970), 191206.CrossRefGoogle Scholar
[4]Blackburn, N. and Huppert, B.. Finite groups II, III (Springer-Verlag, 1982).Google Scholar
[5]Carter, R. W.. Simple Groups of Lie Type (Interscience, 1972).Google Scholar
[6]Dornhoff, L.. Group Representation Theory (Dekker, 1971).Google Scholar
[7]Gorenstein, D. and Harada, K.. Finite groups whose 2-subgroups are generated by at most 4 elements. Mem. Amer. Math. Soc. 147 (1974).Google Scholar
[8]Griess, R. Jr. Schur multipliers of finite simple groups of Lie type. Trans. Amer. Math. Soc. 183 (1973), 355421.CrossRefGoogle Scholar
[9]Hall, M. and Wales, D.. The simple group of order 604,800. J. Algebra 9 (1968), 417450.CrossRefGoogle Scholar
[10]Hartley, B. and A, M.. Shahabi Shojaei. Finite groups of matrices over division rings. Math. Proc. Cambridge Philos. Soc. 92 (1982), 5564.CrossRefGoogle Scholar
[11]Huppert, B.. Endliche Gruppen I (Springer-Verlag, 1967).CrossRefGoogle Scholar
[12]Isaacs, I. M.. Character Theory of Finite Groups (Interscience, 1976).Google Scholar
[13]Janko, Z.. A new finite simple group with abelian Sylow 2-subgroups and its characterization. J. Algebra 3 (1966), 147186.CrossRefGoogle Scholar
[14]Janko, Z.. Some new simple groups of finite order I. Symposia Math. 1 (1969), 2564.CrossRefGoogle Scholar
[15]Janusz, G.. Simple components of Q(SL(2, q)). Comm. Algebra 1 (1974), 122.CrossRefGoogle Scholar
[16]Lyons, R.. Evidence for a new simple group. J. Algebra 20 (1972), 540569.CrossRefGoogle Scholar
[17]MacWillliams, A.. On 2-groups with no normal abelian subgroups of rank 3 and their occurrence as Sylow 2-subgroups of finite simple groups. Trans. Amer. Math. Soc. 150 (1970), 345408.CrossRefGoogle Scholar
[18]McLaughlin, J.. A simple group of order 898,128,000. In Theory of Finite Groups, ed. Brauer, R. and Sah, C.-H. (Benjamin, 1969), pp. 109111.Google Scholar
[19]Roquette, P.. Realisierung von Darstellungen endlicher nilpotenter Gruppen. Arch. Math. 9 (1958), 241250.CrossRefGoogle Scholar
[20]Schur, I.. Über die Darstellung der symmetrischen und alternierenden Gruppen durch gebrochene lineare Substitutionen. J. reine angew. Math. 139 (1911), 155250.CrossRefGoogle Scholar
[21]Shojaei, M. A. Shahabi. Schur indices of irreducible characters of SL(2, q). Arch. Math. 40 (1983), 221231.CrossRefGoogle Scholar
[22]Steinberg, R.. Lectures on Chevalley groups. (Department of Mathematics, Yale University, 1967).Google Scholar
[23]Tits, J.. Quaternions over ℚ(√5), Leech's lattice, and the sporadic group of Hall-Janko. J. Algebra 63 (1980), 5675.CrossRefGoogle Scholar
[24]Zassenhaus, H.. Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11 (1936), 187220.CrossRefGoogle Scholar