Published online by Cambridge University Press: 24 October 2008
We give a quite general geometric criterion for a function analytic in the unit disc to be a polynomial of a univalent function, and hence a criterion for multivalence. We believe that this is the essence why multivalent close-to-convex functions enjoy the latter decomposition property. As another application, we study, as suggested by T. Sheil-Small ‘9’, the geometry of classes of analytic functions which arise from his recent investigation of multivalent harmonic mappings.