Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T06:29:27.406Z Has data issue: false hasContentIssue false

Harmonic typically real mappings

Published online by Cambridge University Press:  24 October 2008

D. Bshouty
Affiliation:
Technion, Haifa, Israel
W. Hengartner
Affiliation:
Université Laval, Québec, Canada
O. Hossian
Affiliation:
Université Laval, Québec, Canada

Abstract

We give an example of a univalent orientation-preserving harmonic mapping f = h + defined on the unit disc U which is real on the real axis, satisfies and is not typically real. Furthermore, we give a geometric characterization for univalent, harmonic and typically real mappings.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bers, L.. Theory of pseudo-analytic functions. Lecture notes (mimeographed) (New York University, 1953).Google Scholar
[2]Boyarski, B. V.. Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients. Mat. Sb. N.S. 43 (85) (1957), 451503 (Russian).Google Scholar
[3]Bshouty, D., Hengartner, N. and Hengartner, W.. A constructive method for starlike harmonic mappings. Numerische Mathematik 54 (1988), 167178.CrossRefGoogle Scholar
[4]Bshouty, D. and Hengartner, W.. Univalent solutions of the Dirichlet problem for ring domains. Complex Variables 21 (1993), 159169.Google Scholar
[5]Carleman, T.. Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables. C.R. Acad. Sci. Paris 197 (1933), 471474.Google Scholar
[6]Clunie, J. G. and Sheil-Small, T. B.. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. AI9 (1984), 325.Google Scholar
[7]Gergen, J. J. and Dressel, F. G.. Mapping by p–regular functions. Duke Math. J. 18 (1951), 185210.CrossRefGoogle Scholar
[8]Gergen, J. J. and Dressel, F. G.. Uniqueness for p–regular mapping. Duke Math. J. 19 (1952), 435444.CrossRefGoogle Scholar
[9]Hengartner, W. and Schober, G.. Harmonic mappings with given dilatation. J. London Math. Soc. (2) 33 (1986), 473483.CrossRefGoogle Scholar