Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-16T18:48:41.720Z Has data issue: false hasContentIssue false

Hausdorff dimension of hairs and ends for entire maps of finite order

Published online by Cambridge University Press:  01 November 2008

KRZYSZTOF BARAŃSKI*
Affiliation:
Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland. e-mail: baranski@mimuw.edu.pl

Abstract

We study transcendental entire maps f of finite order, such that all the singularities of f−1 are contained in a compact subset of the immediate basin B of an attracting fixed point of f. Then the Julia set of f consists of disjoint curves tending to infinity (hairs), attached to the unique point accessible from B (endpoint of the hair). We prove that the Hausdorff dimension of the set of endpoints of the hairs is equal to 2, while the union of the hairs without endpoints has Hausdorff dimension 1, which generalizes the result for exponential maps. Moreover, we show that for every transcendental entire map of finite order from class (i.e. with bounded set of singularities) the Hausdorff dimension of the Julia set is equal to 2.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahlfors, L. V.Conformal Invariants: Topics in Geometric Function Theory (McGraw Hill Book Co., 1973).Google Scholar
[2]Aarts, J. M. and Oversteegen, L. G.The geometry of Julia sets. Trans. Amer. Math. Soc. 338 (1993), 897918.CrossRefGoogle Scholar
[3]Baker, I. N.The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277283.CrossRefGoogle Scholar
[4]Barański, K.Trees and hairs for some hyperbolic entire maps of finite order. Math Z. 257 (2007), 3359.CrossRefGoogle Scholar
[5]Barański, K. and Karpińska, B.Coding trees and boundaries of attracting basins for some entire maps. Nonlinearity 20 (2007), 391415.CrossRefGoogle Scholar
[6]Bodelón, C., Devaney, R. L., Hayes, M., Roberts, G., Goldberg, L. R. and Hubbard, J. H.Hairs for the complex exponential family. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 15171534.CrossRefGoogle Scholar
[7]Devaney, R. L. and Goldberg, L. R.Uniformization of attracting basins for exponential maps. Duke Math. J. 55 (1987), 253266.CrossRefGoogle Scholar
[8]Devaney, R. L. and Krych, M.Dynamics of exp(z). Ergodic Theory Dynam. Systems 4 (1984), 3552.CrossRefGoogle Scholar
[9]Devaney, R. L. and Tangerman, F. M.Dynamics of entire functions near the essential singularity. Ergodic Theory Dynam. Systems 6 (1986), 489503.CrossRefGoogle Scholar
[10]Eremenko, A. E. and Lyubich, M. Yu.Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42 (1992), 9891020.CrossRefGoogle Scholar
[11]Falconer, K. J.Fractal Geometry: Mathematical Foundations and Applications (J. Wiley & Sons, 1990).Google Scholar
[12]Hayman, W. K.Subharmonic Functions. Vol. 2 (Academic Press, 1989).Google Scholar
[13]Karpińska, B.Area and Hausdorff dimension of the set of accessible points of the Julia sets of λez and λ sin z. Fund. Math. 159 (1999), 269287.CrossRefGoogle Scholar
[14]Karpińska, B.Hausdorff dimension of the hairs without endpoints for λ exp z. C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), 10391044.CrossRefGoogle Scholar
[15]Karpińska, B. and Urbański, M.How points escape to infinity under exponential maps. J. London Math. Soc. 73 (2006), 141156.CrossRefGoogle Scholar
[16]Mattila, P.Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, 1995).CrossRefGoogle Scholar
[17]McMullen, C. T.Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1987), 329342.CrossRefGoogle Scholar
[18]Nevanlinna, R.Analytic Functions (Springer-Verlag, 1970).CrossRefGoogle Scholar
[19]Pommerenke, Ch.Boundary Behaviour of Conformal Maps (Springer-Verlag, 1992).CrossRefGoogle Scholar
[20]Rottenfusser, G. and Schleicher, D. Escaping points of the cosine family. Preprint ArXiv:math.DS/0403012 (2004).Google Scholar
[21]Schleicher, D. and Zimmer, J.Escaping points of exponential maps. J. London Math. Soc. 67 (2003), 380400.CrossRefGoogle Scholar
[22]Schubert, H. Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnun. PhD thesis. Christian-Albrechts-Universität, Kiel (2007).Google Scholar
[23]Stallard, G.The Hausdorff dimension of Julia sets of entire functions. Ergodic Theory Dynam. Systems 11 (1991), 769777.CrossRefGoogle Scholar
[24]Stallard, G.The Hausdorff dimension of Julia sets of entire functions. II. Math. Proc. Camb. Phil. Soc. 119 (1996), 513536.CrossRefGoogle Scholar
[25]Stallard, G.The Hausdorff dimension of Julia sets of entire functions. III. Math. Proc. Camb. Phil. Soc. 122 (1997), 223244.CrossRefGoogle Scholar
[26]Stallard, G.The Hausdorff dimension of Julia sets of entire functions. IV. J. London Math. Soc. 61 (2000), 471488.CrossRefGoogle Scholar