Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T06:57:26.905Z Has data issue: false hasContentIssue false

Homomorphs and formations of given derived class

Published online by Cambridge University Press:  24 October 2008

J. Lafuente
Affiliation:
Universidad de Zaragoza

Abstract

A homomorph H is a normal Schunck class if and only if there exists a derived class χ such that H = χ*; moreover, in this case one has H′ = χ (for the definitions, see below). These results give to the derived classes a decisive significance on the study of the normal Schunck classes (see (5)). The aim of this paper is to study the homomorphs H such that H′ is a fixed derived class: we prove that these homomorphs compose a complete and distributive lattice for the inclusion relation (the maximum of this lattice being a normal Schunck class). We construct the greatest and the smallest formations whose derived class is given. We prove finally that, except in trivial cases, a normal Schunck class is not a formation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baer, R.Classes of finite groups and their properties. Illinois J. Math. 1 (1957), 115187.CrossRefGoogle Scholar
(2)Blessenohl, D. and Gaschutz, W.über normale Schunck-und Fittingklassen. Math. Z. 118 (1970), 18.Google Scholar
(3)Carter, R. W., Fischer, B. and Hawkes, T. O.Extreme classes of finite soluble groups. J. Algebra 9 (1968), 285313.Google Scholar
(4)Huppert, B.Endliche Gruppen, i (Berlin, Springer-Verlag, 1967).CrossRefGoogle Scholar
(5)Lafuente, J. Closes de Schunck normales y clases Derivadas. Public. Dep. Algebra y Fundamentos, Zaragoza (1977).Google Scholar
(6)Pérez Monasor, F.Grupos finitos separados respecto de una formación de Fitting. Rev. Acad. de Ciencias de Zaragoza, aerie 2a, 28 (1973), 253301.Google Scholar
(7)Scott, W.Group theory (London, Prentice Hall, 1964).Google Scholar
(8)Schaller, Kay-Uwe, Über die maximale Formation in einem gesattigten Homomorph. J. Algebra 45 (1977), 453464.Google Scholar
(9)Torres, M.Sobre los grupos finitos π-separables. Rev. Acad. de Ciencias de Zaragoza, serie 2a, 26 (1973), 429459.Google Scholar