Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T07:01:25.199Z Has data issue: false hasContentIssue false

Inequalities related to Hardy's and Heinig's

Published online by Cambridge University Press:  24 October 2008

James A. Cochran
Affiliation:
Department of Mathematics, Washington State University, Pullman, WA 99164, U.S.A.
Cheng-Shyong Lee
Affiliation:
Department of Mathematics, Washington State University, Pullman, WA 99164, U.S.A.

Extract

In a 1975 paper [8], Heinig established the following three inequalities:

where A = p/(p + s − λ) with p, s, λ real numbers satisfying p + s > λ,p > 0;

where B = p/(2p + sp − λ −1) with p, s, λ real numbers satisfying 2p +sp > λ, + 1, p > 0;

where is a sequence of nonnegative real numbers,

and C = p[l + l/(p + s−λ)] with p, s, λ real numbers satisfying s > 0, p ≥ 1, and p +s > λ 0.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical Functions. Applied Mathematics, series 55 (National Bureau of Standards, Washington, D.C., 1964).Google Scholar
[2] Carleman, T.. Sur les fonctions quasi-analytiques, Conférences faites au cinquiéme congrés des mathématiciens Scandinaves, Helsingfors (1923), pp. 181196.Google Scholar
[3] Dunford, N. and Schwartz, J. T.. Linear Operators, part I (John Wiley, New York, 1958).Google Scholar
[4] Hardy, G. H.. Notes on some points in the integral calculus (LX). Messenger of Math. 54 (1925), 150156.Google Scholar
[5] Hardy, G. H.. Notes on some points in the integral calculus (LXIV). Messenger of Math. 57 (1928), 1216.Google Scholar
[6] Hardy, G. H. and Littlewood, J. E.. Notes on the theory of series (XII): on certain inequalities connected with the calculus of variations. J. London Math. Soc. 5 (1930), 3439.CrossRefGoogle Scholar
[7] Hardy, G. H., Littlewood, J. E. and Pólya, G.. Inequalities, 2nd ed. (Cambridge University Press, 1964).Google Scholar
[8] Heinig, H. P.. Some extensions of Hardy's inequality. SIAM J. Math. Anal. 6 (1975), 698713.CrossRefGoogle Scholar
[9] Hewitt, E. and Stromberg, K.. Real and Abstract Analysis (Springer-Verlag, New York, 1965).Google Scholar
[10] Knopp, K.. Über Reihen mit positiven Gliedern. London Math. Soc. 3 (1928), 205211.CrossRefGoogle Scholar
[11] Mitrinović, D. S.. Analytic Inequalities (Springer-Verlag, New York, 1970).CrossRefGoogle Scholar