Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T18:17:29.626Z Has data issue: false hasContentIssue false

The integral isomorphism behind row removal phenomena for schur algebras

Published online by Cambridge University Press:  10 May 2018

CHRISTOPHER BOWMAN
Affiliation:
School of Mathematics, Statistics and Actuarial Science University of Kent Canterbury CT2 7NF, U.K. e-mail: C.D.Bowman@kent.ac.uk
EUGENIO GIANNELLI
Affiliation:
Trinity Hall, Trinity Lane, Cambridge, CB2 1TJ, U.K. e-mail: eg513@cam.ac.uk

Abstract

We explain and generalise row and column removal phenomena for Schur algebras via integral isomorphisms between subquotients of these algebras. In particular, we prove new reduction formulae for p-Kostka numbers.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[CMT02] Chuang, J., Miyachi, H. and Tan, K. M. Row and column removal in the q-deformed Fock space. J. Algebra 254 (2002), no. 1, 8491.Google Scholar
[CPS88] Cline, E., Parshall, B. and Scott, L. Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391 (1988), 8599.Google Scholar
[CHN10] Cohen, F., Hemmer, D. and Nakano, D. On the cohomology of Young modules for the symmetric group. Adv. Math. 224 (2010), no. 4, 14191461.Google Scholar
[DJM98] Dipper, R., James, G. and Mathas, A. Cyclotomic q-Schur algebras. Math. Zeit. 229 (1998), 385416.Google Scholar
[Don85] Donkin, S. A note on decomposition numbers for general linear groups and symmetric groups. Math. Proc. Camb. Phil. Soc. 97 (1985), no. 1, 5762.Google Scholar
[Don93] Donkin, S. On tilting modules for algebraic groups. Math. Z. 212 (1993), 39?60.Google Scholar
[Don98] Donkin, S. The q-Schur algebra. London Math. Soc. Lecture Note Ser. vol. 253 (Cambridge University Press, Cambridge, 1998).Google Scholar
[Don07] Donkin, S. Tilting modules for algebraic groups and finite dimensional algebras. Handbook of Tilting Theory. London Math. Soc. Lecture Note Ser. vol. 332 (Cambridge University Press, Cambridge, 2007), pp. 215257.Google Scholar
[DG02] Doty, S. and Giaquinto, A. Presenting Schur algebras. Int. Math. Res. Not. (2002), 1907–1944.Google Scholar
[DG] Doty, S. and Giaquinto, A. Cellular bases of generalised q-Schur algebras. arxiv1012.5983.Google Scholar
[Erd96] Erdmann, K. Decomposition numbers for symmetric groups and composition factors of Weyl modules. J. Algebra 180 (1996), 316320.Google Scholar
[Erd93] Erdmann, K. Schur algebras of finite type. Quart. J. Math. (Oxford) 44 (2) (1993), 1741.Google Scholar
[Erd01] Erdmann, K. Young modules for symmetric groups. J. Aust. Math. Soc. 71 no. 2 (2001), 201210.Google Scholar
[EH02] Erdmann, K. and Henke, A. On Schur algebras, Ringel duality and symmetric groups. J. Pure Appl. Algebra 169 (2002), 175199.Google Scholar
[FHK08] Fang, M., Henke, A. and Koenig, S. Comparing GL(n)-representations by characteristic-free isomorphisms between generalised Schur algebras. Forum Math. 20, no. 1 (2008), 45–79. With an appendix by Stephen Donkin.Google Scholar
[FL03] Fayers, M. and Lyle, S. Row and column removal theorems for homomorphisms between Specht modules. J. Pure Appl. Algebra 185 (2003), no. 1-3, 147164.Google Scholar
[FS] Fayers, M. and Speyer, L. Generalised column removal for graded homomorphisms between Specht modules. To appear in J. Algebraic Combin.Google Scholar
[Gil14] Gill, C. Young module multiplicities, decomposition numbers and the indecomposable Young permutation modules. J. Algebra Appl. 13, no. 5 (2014), 1350147, 23 pp.Google Scholar
[Gra85] Grabmeier, J. Unzerlegbare Moduln mit trivialer Younquelle und Darstellungstheorie der Schuralgebra. Bayreuth. Math. Schr. 20 (1985), 9152.Google Scholar
[GL96] Graham, J. J. and Lehrer, G. I. Cellular algebras. Invent. Math. 123 (1996), no. 1, 134.Google Scholar
[Gre93] Green, J. A. Combinatorics and the Schur algebra. J. Pure Appl. Algebra 88 (1993), 89106.Google Scholar
[Gre80] Green, J. A. Polynomial Representations of GLn Lecture Notes in Math. vol. 830 (Springer, Berlin/Heidelberg/New York, 1980).Google Scholar
[Hen05] Henke, A. On p-Kostka numbers and Young modules. European J. Combin. 26 (2005), no. 6, 923942.Google Scholar
[Jam81] James, G. D. On the decomposition matrices of the symmetric groups III. J. Algebra 71 (1981), 115122.Google Scholar
[Jam83] James, G. D. Trivial source modules for the symmetric groups. Arch. Math. 41 (1983), 294300.Google Scholar
[Jam78] James, G. D. The representation theory of the symmetric groups. Lecture Notes in Math. vol. 682 (Springer, 1978).Google Scholar
[KN01] Kleshchev, A. and Nakano, D. On comparing the cohomology of general linear and symmetric groups. Pacific J. Math. 201 (2001), no. 2, 339355.Google Scholar
[Kl83] Klyachko, A. A. Direct summands of permutation modules. Sel. Math. Sov. 3 (1) (1983), 4555.Google Scholar
[LM05] Lyle, S. and Mathas, A. Row and column removal theorems for homomorphisms of Specht modules and Weyl modules. J. Algebraic Combin. 22 (2005), 151179.Google Scholar
[Mat99] Mathas, A. Iwahori-Hecke algebras and Schur algebras of the symmetric group. American Mathematical Society, Providence, RI, 1999.Google Scholar
[Mur95] Murphy, G. E. The representations of Hecke algebras of type A n. J. Algebra 173 (1995), 97121.Google Scholar
[PS08] Parshall, B. and Scott, L. Extensions, Levi subgroups and character formulas. J. Algebra 319 (2008), no. 2, 680701.Google Scholar
[Rou08] Rouquier, R. q-Schur algebras and complex reflection groups. Mosc. Math. J. 8 (2008), 119158.Google Scholar