Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:29:03.824Z Has data issue: false hasContentIssue false

Integral Riemann–Roch formulae for cyclic subgroups of mapping class groups

Published online by Cambridge University Press:  01 March 2008

TOSHIYUKI AKITA
Affiliation:
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan. email: akita@math.sci.hokudai.ac.jp
NARIYA KAWAZUMI
Affiliation:
Department of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914, Japan. email: kawazumi@ms.u-tokyo.ac.jp

Abstract

The first author conjectured certain relations for Morita–Mumford classes and Newton classes in the integral cohomology of mapping class groups (integral Riemann–Roch formulae). In this paper, the conjecture is verified for cyclic subgroups of mapping class groups.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akita, T.. Nilpotency and triviality of mod p Morita–Mumford classes of mapping class groups of surfaces. Nagoya Math. J. 165 (2002), 122.CrossRefGoogle Scholar
[2]Akita, T., Kawazumi, N. and Uemura, T.. Periodic surface automorphisms and algebraic independence of Morita–Mumford classes. J. Pure Appl. Algebra 160 (2001), 111.Google Scholar
[3]Earle, C. J. and Eells, J.. A fibre bundle description of Teichmüller theory. J. Differential Geom. 3 (1969), 1943.Google Scholar
[4]Farkas, H. M. and Kra, I.. Riemann Surfaces (2nd ed.). GTM 71 (Springer–Verlag, 1992).Google Scholar
[5]Galatius, S., Madsen, Ib and Tillmann, U.. Divisibility of the stable Miller–Morita-Mumford classes. J. Amer. Math. Soc. 19 (2006), 759779.CrossRefGoogle Scholar
[6]Glover, H. H., Mislin, G. and Xia, Y.. On the Yagita invariant of mapping class groups. Topology 33 (1994), 557574.CrossRefGoogle Scholar
[7]Harer, J. L.. The second homology group of the mapping class group of an oriented surface. Invent. Math. 72 (1983), 221239.CrossRefGoogle Scholar
[8]Ireland, K. and Rosen, M.. A Classical Introduction to Modern Number Theory (2nd ed.). GTM 84 (Springer–Verlag, 1981).Google Scholar
[9]Kawazumi, N.. Weierstrass points and Morita–Mumford classes on hyperelliptic mapping class groups. Topology Appl. 125 (2002), 363383.Google Scholar
[10]Kawazumi, N. and Uemura, T.. Riemann–Hurwitz formula for Morita–Mumford classes and surface symmetries. Kodai Math. J. 21 (1998), 372380.Google Scholar
[11]Morita, S.. Characteristic classes of surface bundles. Invent. Math. 90 (1987), 551577.Google Scholar
[12]Mumford, D.. Towards an enumerative geometry of the moduli space of curves. In Arithmetic and Geometry Vol. II (Birkhäuser, 1983), pp. 271328.CrossRefGoogle Scholar
[13]Nielsen, J.. The structure of periodic surface transformations. In Jakob Nielsen: Collected Mathematical Papers Vol. 2 (Birkhäuser, 1986), pp. 65102.Google Scholar
[14]Porubský, Š.. Voronoĭ's congruence via Bernoulli distributions. Czechoslovak Math. J. 34 (109) (1984), 15.CrossRefGoogle Scholar
[15]Porubský, Š.. Voronoi type congruences for Bernoulli numbers. In Voronoi's Impact on Modern Science Book 1 (Institute of Mathematics of the National Academy of Sciences of Ukraine, 1998), pp. 7198.Google Scholar
[16]Symonds, P.. The cohomology representation of an action of C p on a surface. Trans. Amer. Math. Soc. 306 (1988), 389400.Google Scholar
[17]Thomas, C. B.. Characteristic Classes and Cohomology of Finite Groups. Cambridge Studies in Advanced Mathematics 9 (Cambridge University Press, 1986).CrossRefGoogle Scholar