Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T07:11:13.002Z Has data issue: false hasContentIssue false

Invariant states and ergodic dynamical systems on W*-algebras

Published online by Cambridge University Press:  24 October 2008

Andrzej uczak
Affiliation:
Institute of Mathematics, d University, Banacha 22, 90-238 d, Poland

Abstract

An amenable semigroup of positive linear unital mappings on a W*-algebra is considered. Two main questions are dealt with: the existence of a normal faithful state invariant with respect to this semigroup and the description of ergodicity conditions. An explicit form of the ergodic projection, useful in treating the ergodicity problems, is also derived.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bratteli, O. and Robinson, D. W.. Operator Algebras and Quantum Statistical Mechanics, vol. 1 (Springer-Verlag, 1979).Google Scholar
2Davies, E. B.. Some contraction semigroups in quantum probability. Z. Wahrsch. Verw. Gebiete 23 (1972), 261273.CrossRefGoogle Scholar
3Davies, E. B.. One-parameter Semigroups (Academic Press, 1980).Google Scholar
4Day, M.. Amenable semigroups. Illinois J. Math. 1 (1957), 509544.Google Scholar
5Emch, G. G.. Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley-Interscience, 1972).Google Scholar
6Greenleaf, F. P.. Invariant Means on Topological Groups and their Applications (Van Nostrand-Reinhold, 1969).Google Scholar
7Hewitt, E. and Ross, K. A.. Abstract Harmonic Analysis, vol. 1 (Springer-Verlag, 1963).Google Scholar
8Jajte, R.. On the existence of invariant states in W*-algebras. Bull. Polish Acad. Sci. Math. 34 (1986), 617624.Google Scholar
9Kadison, R. V.. The trace in finite operator algebras. Proc. Amer. Math. Soc. 12 (1961), 973977.Google Scholar
10Nagel, R. J.. Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier (Grenoble) 23 (1973), 7587.CrossRefGoogle Scholar
11Takesaki, M.. Theory of Operator Algebras, vol. 1 (Springer-Verlag, 1979).Google Scholar
12Thomsen, K. E.. Invariant states for positive operator semigroups. Studia Math. 81 (1985), 285291.Google Scholar
13Watanabe, S.. Asymptotic behaviour and eigenvalues of dynamical semigroups on operator algebras. J. Math. Anal. Appl. 86 (1982), 411424.Google Scholar