Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:18:31.729Z Has data issue: false hasContentIssue false

Invariant tensors for the spin representation of (7)

Published online by Cambridge University Press:  01 January 2008

BRUCE W. WESTBURY*
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL e-mail: Bruce.Westbury@warwick.ac.uk

Abstract

We give a graphical calculus for the invariant tensors of the eight dimensional spin representation of the quantum group Uq(B3). This leads to a finite confluent presentation of the centraliser algebras of the tensor powers of this representation and a construction of a cellular basis.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BD02]Benkart, G. and Doty, S.. Derangements and tensor powers of adjoint modules for frak sl sb n. J. Algebraic Combin 16 (1) (2002), 3142.CrossRefGoogle Scholar
[CPS88]Cline, E., Parshall, B. and Scott, L.. Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math 391 (1988), 8599.Google Scholar
[DGZ96]Delius, G. W., Gould, M. D. and Zhang, Y.-Z.. Twisted quantum affine algebras and solutions to the Yang-Baxter equation. Internat. J. Modern Phys. 11 (19) (1996), 34153437, arXiv:q-alg/9506017.CrossRefGoogle Scholar
[dSCV86]Sainte-Catherine, M. de and Viennot, G.. Enumeration of certain Young tableaux with bounded height. In Combinatoire Énumérative (Montreal, Que., 1985/Quebec, Que., 1985), vol. 1234. Lecture Notes in Math. pages 58–67 (Springer, 1986).CrossRefGoogle Scholar
[FK97]Frenkel, I. B. and Khovanov, M. G.. Canonical bases in tensor products and graphical calculus for sb q(frak sl sb 2). Duke Math. J 87 (3) (1997), 409480.CrossRefGoogle Scholar
[GL96]Graham, J. J. and Lehrer, G. I.. Cellular algebras. Invent. Math 123 (1) (1996), 134.CrossRefGoogle Scholar
[GL98]Graham, J. J. and Lehrer, G. I.. The representation theory of affine Temperley–Lieb algebras. Enseign. Math. (2 44 (3–4) (1998), 173218.Google Scholar
[GLWX90]Ge, M. L., Li, Y. Q., Wang, L. Y. and Xue, K.. The braid group representations associated with some nonfundamental representations of Lie algebras. J. Phys. 23 (5) (1990), 605618.Google Scholar
[HK02]Hong, J. and Kang, S.-J.. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics, vol. 42. (American Mathematical Society, 2002).CrossRefGoogle Scholar
[HM91]Hou, B. Y. and Ma, Z. Q.. Solutions to the Yang–Baxter equation for the spinor representations of q-Bsb l. J. Phys. 24 (7) (1991), 13631377.Google Scholar
[Kac85]Kac, V. G.. Infinite-dimensional Lie Algebras (Cambridge University Press, 1985).Google Scholar
[KLLO02]Kang, S.-J., Lee, I.-S., Lee, K.-H. and Oh, H.. Hecke algebras, Specht modules and Gröbner-Shirshov bases. J. Algebr 252 (2) (2002), 258292.CrossRefGoogle Scholar
[Kup94]Kuperberg, G.. The quantum $G\sb 2$ link invariant. Internat. J. Math 5 (1) (1994), 6185.CrossRefGoogle Scholar
[Kup96a]Kuperberg, G.. Spiders for rank 2 Lie algebras. Comm. Math. Phys 180 (1) (1996), 109151.CrossRefGoogle Scholar
[Kup96b]Kuperberg, G.. Spiders for rank 2 Lie algebras. Comm. Math. Phys 180 (1) (1996), 109151.CrossRefGoogle Scholar
[KX99]König, S. and Xi, C.. When is a cellular algebra quasi-hereditary? Math. Ann 315 (2) (1999), 281293.Google Scholar
[Lus93]Lusztig, G.. Introduction to quantum groups. Progr. Math 110 (1993).Google Scholar
[Mac91]MacKay, N. J.. Rational R-matrices in irreducible representations. J. Phys. 24 (17) (1991), 40174026.Google Scholar
[New42]Newman, M. H. A.. On theories with a combinatorial definition of “equivalence.” Ann. of Math. (2 43 (1942), 223243.CrossRefGoogle Scholar
[Oka90]Okado, M.. Quantum R matrices related to the spin representations of B sb n and D\sb n. Comm. Math. Phys 134 (3) (1990), 467486.CrossRefGoogle Scholar
[Sim94]Sims, C. C.. Computation with Finitely Presented Groups, Encyclopedia of Mathematics and its Applications, vol. 48 (Cambridge University Press, 1994).CrossRefGoogle Scholar
[Slo06]Sloane, N. J.. The on-line encylopedia of integer sequences (2006). http://www.research.att.com/njas/sequences/.Google Scholar
[SW]Sikora, A. S. and Westbury, B. W.. Confluence theory for graphs. Algebr. Geom. Topol 7 (2007), 439478. arXiv:math.QA/0609832.CrossRefGoogle Scholar
[TW01]Tuba, I. and Wenzl, H.. Representations of the braid group B sb 3 and of SL (2, Z). Pacific J. Math 197 (2) (2001), 491510, arXiv:math.RT/9912013.CrossRefGoogle Scholar
[Wen90]Wenzl, H.. Quantum groups and subfactors of type B, C, and D. Comm. Math. Phys 133 (2) (1990), 383432.CrossRefGoogle Scholar
[Wes95]Westbury, B. W.. The representation theory of the Temperley-Lieb algebras. Math. Z 219 (4) (1995), 539565.CrossRefGoogle Scholar
[Wes97]Westbury, B. W.. Quotients of the braid group algebras. Topology Appl 78 (1–2) (1997), 187199.CrossRefGoogle Scholar
[Wes06]Westbury, B. W.. Enumeration of non-positive planar trivalent graphs. J. Algebraic Cambin 25 (4) (2007), 357373. arXiv:math CO/0507112.CrossRefGoogle Scholar
[Wey39]Weyl, H.. The Classical Groups. Their Invariants and Representations (Princeton University Press, 1939).Google Scholar
[ZGB91]Zhang, R. B., Gould, M. D. and Bracken, A. J.. From representations of the braid group to solutions of the Yang-Baxter equation. Nuclear Phys. 354 (2–3) (1991), 625652.CrossRefGoogle Scholar