Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:39:30.074Z Has data issue: false hasContentIssue false

Jordan homomorphisms revisited

Published online by Cambridge University Press:  01 March 2008

MATEJ BREŠAR*
Affiliation:
Department of Mathematics and Computer Science, FNM, University of Maribor, Koroška 160, 2000 Maribor, Slovenia.

Abstract

Let θ be a Jordan homomorphism from an algebra A into an algebra B. We find various conditions under which the restriction of θ to the commutator ideal of A is the sum of a homomorphism and an antihomomorphism. Algebraic results, obtained in the first part of the paper, are applied to the second part dealing with the case where A and B are C*-algebras.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baxter, W. E. and Martindale, W. S.3rd. Jordan homomorphisms of semiprime rings. J. Algebra 56 (1979), 457471.CrossRefGoogle Scholar
[2]Benkovič, D.Jordan homomorphisms on triangular matrices. Linear Multilinear Algebra 53 (2005), 345356.CrossRefGoogle Scholar
[3]Brešar, M.Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218228.CrossRefGoogle Scholar
[4]Brešar, M.Jordan mappings of semiprime rings II. Bull. Austral. Math. Soc. 44 (1991), 233238.CrossRefGoogle Scholar
[5]Brešar, M.Centralizing mappings on von Neumann algebras. Proc. Amer. Math. Soc. 111 (1991), 501510.CrossRefGoogle Scholar
[6]Brešar, M.Jordan derivations revisited. Math. Proc. Camb. Phil. Soc. 139 (2005), 411425.CrossRefGoogle Scholar
[7]Brešar, M.Fošner, A. and Fošner, M.. Jordan ideals revisited. Monatsh. Math. 145 (2005), 110.CrossRefGoogle Scholar
[8]Brešar, M.Kissin, E. and Shulman, V. S.. When Jordan modules are bimodules, Quart. J. Math., to appear.Google Scholar
[9]Civin, P. and Yood, B.. Lie and Jordan structures in Banach algebras. Pacific J. Math. 15 (1965), 775797.CrossRefGoogle Scholar
[10]Herstein, I. N.Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331341.CrossRefGoogle Scholar
[11]Jacobson, N.Structure and representation of Jordan algebras, AMS Coll. Public. Vol. 39 (Providence, 1968).Google Scholar
[12]Jacobson, N. and Rickart, C.. Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479502.CrossRefGoogle Scholar
[13]Kadison, R. V.Isometries of operator algebras. Ann. Math. 54 (1951), 325338.CrossRefGoogle Scholar
[14]Martindale, W. S.3rd. Jordan homomorphisms onto nondegenerate Jordan algebras. J. Algebra 133 (1990), 500511.CrossRefGoogle Scholar
[15]Mc Crimmon, K.The Zelmanov approach to Jordan homomorphisms of associative algebras. J. Algebra 123 (1989), 457477.CrossRefGoogle Scholar
[16]Pearcy, C. and Topping, D.. On commutators in ideals of compact operators. Michigan J. Math. 18 (1971), 247252.CrossRefGoogle Scholar
[17]Smiley, M. F.Jordan homomorphisms onto prime rings. Trans. Amer. Math. Soc. 84 (1957), 426429.CrossRefGoogle Scholar
[18]Stφrmer, E.On the Jordan structure of C*-algebras. Trans. Amer. Math. Soc. 120 (1965), 438447.Google Scholar