Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T05:29:10.432Z Has data issue: false hasContentIssue false

Lifting amalgams and other colimits of monoids

Published online by Cambridge University Press:  24 October 2008

Philip R. Heath
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada

Extract

Let U = [{Mi: i ∈ I}; U; {øi: iI}] be a monoid amalgam of inclusions, i.e. U and each Mi is a monoid, and øi: U → Mi are inclusions. Let be the monoid free product of the amalgam U (see for example [10] for these concepts), and let β: B → H be a homomorphism of monoids. The type of question we seek to answer in this paper is under what conditions (on β, B and H) can we deduce that B is isomorphic to the free product of the amalgam

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brown, R. and Heath, P. R.. Lifting amalgamated sums and other colimits of groups and topological groups. Math. Proc. Cambridge Philos. Soc. 102 (1987), 273280.CrossRefGoogle Scholar
[2]Conduché, F.. Au sujet de l'existence d'adjoints a droit aux foncteurs image reciproque que dans la catéorie des catégories. C.R. Acad. Sci. Paris Sér. A 275 (1972), 891894.Google Scholar
[3]Fortunatov, V. A.. Perfect Semigroups. lzv. Vyssh. Uchebn. Zaved. Mat. 118 (1972), 8089 (in Russian).Google Scholar
[4]Fortunatov, V. A.. Perfect ideal extensions. In Theory of Semigroups and its Applications No. 4 (Saratov. Gros. Univ., 1978), pp. 98109 (in Russian).Google Scholar
[5]Hamilton, H.. Perfect completely regular semigroups. Math. Nachr. 123 (1985), 169176.CrossRefGoogle Scholar
[6]Heath, P. R. and Kamps, K. H.. Lifting colimits of (topological) groupoids, and (topological) categories. In Categorical Topology, and its Relations to Analysis Algebra and Combinatorics (World Scientific Press, 1989).Google Scholar
[7]Heath, P. R. and Parmenter, K. M.. Lifting Colimits in various categories. Math. Proc. Cambridge Philos. Soc. 104 (1988), 193197.CrossRefGoogle Scholar
[8]Howie, J.. Pullback functors and crossed complexes. Cahiers Topologié Géom. Différentielle Catégorigues 20 (1979), 281296.Google Scholar
[9]Howie, J. M.. An Introduction to Semigroup Theory (Academic Press, 1976).Google Scholar
[10]Lallement, G.. Sur les Produits Amalgames de Monoides. In Séminaire d'Algèbre Paul Dubriel, Paris 1975–1976 (29ième Année). Lecture Notes in Math. vol. 586 (Springer-Verlag, 1977), pp. 2533.Google Scholar
[11]McKnight, J. D. Jr and Storey, A. J.. Equidivisible Semigroups. J. Algebra 12 (1969), 2448.CrossRefGoogle Scholar
[12]Petrich, M.. Inverse Semigroups (J. Wiley and Sons, 1984).Google Scholar
[13]Vagner, V. V.. Algebraic topics of the general theory of partial connections in fibre bundles. lzv. Vyssh. Uchebn. Zaved. Mat. 11 (1968), 2632 (in Russian).Google Scholar