Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:33:09.448Z Has data issue: false hasContentIssue false

Lifting colimits in various categories

Published online by Cambridge University Press:  24 October 2008

Philip R. Heath
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7.
M. M. Parmenter
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5S7.

Extract

In a recent publication [2], R. Brown and the first author proved a Lifting Theorem for groups (and topological groups) showing that if β: BH is an epimorphism of groups and H is a certain type of colimit of groups, then this colimit can be lifted (or pulled back) through β; that is B is a colimit of the lifted diagram (see Corollary 2·3 below).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Booth, P. I. and Brown, R.. Spaces of partial maps, fibred mapping spaces and the compact-open topology. Gen. Top. Appl. 8 (1978), 181195.CrossRefGoogle Scholar
[2]Brown, R. and Heath, P. R.. Lifting amalgamated sums and other colimits of groups and topological groups. Math. Proc. Cambridge Philos. Soc. 102 (1987), 273280.CrossRefGoogle Scholar
[3]Conduché, F.. Au sujet de l'existence d'adjoints a droit aux foncteurs image reciproque que dans la catégorie des catégories. C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 891894.Google Scholar
[4]Howie, J.. Pullback functors and crossed complexes. Cahiers Topologie Géom. Différentielle Catégoriques 20 (1979), 281296.Google Scholar
[5]Heath, P. R. and Kamps, K. H.. Lifting colimits of (topological) groupoids, and (topological) categories. (In preparation.)Google Scholar
[6]MacLane, S.. Categories for the Working Mathematician (Springer-Verlag, 1971).Google Scholar
[7]Niefield, S. B.. Cartesianness. Ph.D. thesis, Rutgers University (1978).Google Scholar
[8]Niefield, S. B.. Cartesianness: topological spaces, uniform spaces, and affine schemes. J. Pure Appl. Algebra 23 (1982), 147167.CrossRefGoogle Scholar