Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T07:40:50.998Z Has data issue: false hasContentIssue false

Locally nilpotent ideals of a Lie algebra

Published online by Cambridge University Press:  24 October 2008

B. Hartley
Affiliation:
University of Warwick

Extract

The purpose of this paper is to investigate the locally nilpotent radical of a Lie algebra L over a field of characteristic zero, its behaviour under derivations of L, and its behaviour with regard to finite-dimensional nilpotent subinvariant and ascendant subalgebras of L.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baer, R. Nilgruppen.Math. Z. 62 (1955), 402437.CrossRefGoogle Scholar
(2)Baer, R.Meta-ideals. Report of a conference on linear algebra (1956), 3352 (Nat. Acad. Sci. U.S.A., Washington, D.C., 1957).Google Scholar
(3)FreǏdman, P. A.Rings with an idealizer condition. Part I. Izv. Vysš. Učebn. Zaved. Matematika 2 (15) (1960), 213222. Part II. Učen. Zap. Ural Gos. Univ. (1959), vyp. 23, 35–48. Part III. Učen. Zap. Ural Gos. Univ. (1960), vyp. 23, 49–61.Google Scholar
(4)Gruenberg, K. W.The Engel elements of a soluble group. Illinois J. Math. 3 (1959), 151167.Google Scholar
(5)Hirsch, K. A.Uber lokal-nilpotente Gruppen. Math. Z. 63 (1955), 290294.CrossRefGoogle Scholar
(6)Jacobson, N. A.Lie algebras. Interscience tracts, no. 10 (New York, 1962).Google Scholar
(7)McLain, D. H.On locally nilpotent groups. Proc. Cambridge Philos. Soc. 52 (1956), 511.Google Scholar
(8)Plotkin, B. I.Algebraic sets in groups and Lie algebras. Uspekhi Mat. Nauk. 13 (1958), no. 6 (84), 133139 (Russian).Google Scholar
(9)Robinson, D. S.Joins of subnormal subgroups. Illinois J. Math. 9 (1965), 144167.CrossRefGoogle Scholar
(10)Schenkman, E.A theory of subinvariant Lie algebras. Amer. J. Math. 73 (1951), 453474.Google Scholar
(11)Simonjan, L. A.Two radicals of Lie algebras. Dokl. Akad. Nauk. SSSR 157 (1964), 281283 (Russian). Soviet Math. Doklady 5 (1964), 941–944 (English summary).Google Scholar
(12)Zassenhaus, H.The theory of groups, 2nd ed. (Chelsea, 1958).Google Scholar