Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T05:01:21.816Z Has data issue: false hasContentIssue false

Lower bounds for the number of conjugacy classes of finite groups

Published online by Cambridge University Press:  15 June 2009

THOMAS MICHAEL KELLER*
Affiliation:
Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, U.S.A. e-mail: keller@txstate.edu

Abstract

In 2000, L. Héthelyi and B. Külshammer proved that if p is a prime number dividing the order of a finite solvable group G, then G has at least conjugacy classes. In this paper we show that if p is large, the result remains true for arbitrary finite groups.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aschbacher, M.Finite Group Theory, (Cambridge University Press, 1986).Google Scholar
[2]Babai, L. and Pyber, L.Permutation groups without exponentially many orbits on the power set. J. Combin. Theory Ser. A 66 (1994), 160168.CrossRefGoogle Scholar
[3]Bertram, E. A.Lower bounds for the number of conjugacy classes in finite groups. Ischia Group Theory (2004), 95–117. Contemp. Math. 402 (AMS, 2006).CrossRefGoogle Scholar
[4]Dixon, J. D.The Structure of Linear Groups. (Van Nostrand-Reinhold, 1971).Google Scholar
[5]Gambini-Weigel, A. and Weigel, T. S.On the orders of primitive linear p′-groups. Bull. Austral. Math. Soc. 48 (1993), 495521.CrossRefGoogle Scholar
[6]Gluck, D. and Magaard, K.Base sizes and regular orbits for coprime affine permutation groups. J. London Math. Soc. (2) 58 (1998), 603618.CrossRefGoogle Scholar
[7]Héthelyi, L. and Külshammer, B.On the number of conjugacy classes of a finite solvable group. Bull. London Math. Soc. 32 (2000), 668672.CrossRefGoogle Scholar
[8]Huppert, B.Character Theory of Finite Groups (deGruyter, Berlin, 1998).CrossRefGoogle Scholar
[9]Huppert, B.Endliche Gruppen I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[10]Huppert, B.Zweifach transitive auflösbare permutationsgruppen. Math. Z. 68 (1957), 126150.CrossRefGoogle Scholar
[11]Keller, T. M.The k(GV)-problem revisited: J. Austral. Math. Soc. 79 (2005), 257276.CrossRefGoogle Scholar
[12]Manz, O. and Wolf, T. R.Representations of solvable groups. London Math. Soc. Lecture Notes Series 185, (Cambridge University Press, 1993).CrossRefGoogle Scholar
[13]Maróti, A.On elementary lower bounds for the partition function. Integers 3 (2003), #A 10 (9 pages).Google Scholar
[14]Malle, G.Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler operation. J. Algebra 300 (2006), 655672.CrossRefGoogle Scholar
[15]Praeger, C. E. and Saxl, J. On the orders of primitive permutation groups. Bull. London Math. Soc. (12) (1980), 303–307.CrossRefGoogle Scholar
[16]Pyber, L.Finite groups have many conjugacy classes. J. London Math. Soc. (2) 46 (1992), 239249.CrossRefGoogle Scholar
[17]Robinson, G. R. and Thompson, J. G.On Brauer's k(B)-problem. J. Algebra 184 (1996), 11431160.CrossRefGoogle Scholar
[18]Weigel, T. S. personal email communication, July 2006.Google Scholar