Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T06:12:18.284Z Has data issue: false hasContentIssue false

A method of evaluating the complex zeros of polynomials using polar coordinates

Published online by Cambridge University Press:  24 October 2008

W. F. Bodmer
Affiliation:
Department of GeneticsUniversity of Cambridge

Extract

Methods for finding complex roots numerically may broadly be classified into the following three types.

(a) Direct methods. These require no knowledge of an initial approximation. The best known are Graeffe's ‘root-squaring’ method (see, for example, Whittaker and Robinson(17)) and Bernoulli's method extended to complex roots (Aitken(1)). Fry (8) gives an interesting method for finding the characteristic roots of a matrix, originally due to Duncan and Collar (5), (6), which contains the above-mentioned methods as special cases.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Aitken, A. C.Proc. Roy. Soc. Edinburgh, Sect. A, 46 (1926), 289.Google Scholar
(2)Aitken, A. C.Proc. Roy. Soc. Edinburgh, Sect. A, 63 (1951), 174.Google Scholar
(3)Bairstow, L.Rep. Memor. adv. Comm. Aero. London, 154 (1914), 51.Google Scholar
(4)Bodmer, W. F.Proc. Cambridge Philos. Soc. 56 (1960), 286.CrossRefGoogle Scholar
(5)Duncan, W. J. and Collar, A. R.Phil. Mag. (7), 17 (1934), 865.CrossRefGoogle Scholar
(6)Duncan, W. J. and Collar, A. R.Phil. Mag. (7), 19 (1935), 197.CrossRefGoogle Scholar
(7)Frazer, W. J. and Duncan, R. A.Proc. Roy. Soc. London, Ser. A, 125 (1929), 68.Google Scholar
(8)Fry, T. C.Quart. Appl. Math. 3 (1945), 89.CrossRefGoogle Scholar
(9)Hartree, D. R.Numerical analysis (Oxford, 1954).Google Scholar
(10)Hartree, D. R.Proc. Cambridge, Philos. Soc. 45 (1949), 230.CrossRefGoogle Scholar
(11)Hartree, D. R.Calculating instruments and machines (Cambridge, 1950).Google Scholar
(12)Hitchcock, F. L. J.Math. Phys. 23 (1944), 69.CrossRefGoogle Scholar
(13)Lin, S.-N.J. Math. Phys. 20 (1941), 231.CrossRefGoogle Scholar
(14)Lin, S.-N.J. Math. Phys. 22 (1943), 60.CrossRefGoogle Scholar
(15)Olver, F. W. J.Philos. Trans: Roy. Soc. London, Ser. A, 244 (1952), 385.Google Scholar
(16)Samuelson, P. A. J.Math. Phys. 28 (1949), 259.CrossRefGoogle Scholar
(17)Whittaker, E. T. and Robinson, G.Calculus of observations (Blackie and Son, 1946).Google Scholar