Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T07:18:25.141Z Has data issue: false hasContentIssue false

The Mobility Distribution and Rate of Formation of Negative Ions in Air

Published online by Cambridge University Press:  24 October 2008

J. L. Hamshere
Affiliation:
Trinity College.

Extract

A modification of the alternating field method of measuring ionic mobility in a gas gives an experimental curve showing upper and lower limits to k. From this a distribution curve is derived, which has a calculable resolving power.

The mobility of negative ions in dry air shows a continuous distribution between the limits 2·15 and 1·45, with a peak value about 1·8.

At low pressures the current is resolved into ions and free electrons. From the relative numbers reaching the electrometer it is found that the electron makes an average number 9·4. 104 collisions before capture, independent of field strength and pressure, and therefore independent of the electron speed over a range W = 2×105 to W = 7×105.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1929

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Rutherford, , Phil. Mag., XLIV (1897), 429.Google Scholar
(2)Nolan, J. J., Proc. Roy. Soc. A, XCIV (1917), 112.Google Scholar
Nolan, P. J., Phys. Rev., XVIII (1921), 185;CrossRefGoogle Scholar
Phil. Mag., I (1926), 417.Google Scholar
(3)Blackwood, , Phys. Rev., XX (1922), 499.CrossRefGoogle Scholar
(4)Busse, , Ann. der Phys., LXXXII (1927), 697.CrossRefGoogle Scholar
(5)Laporte, , Annales de Phys., VIII (1927), 466, 710.CrossRefGoogle Scholar
(6)Loeb, , Phys. Rev., XVII (1921), 89;CrossRefGoogle Scholar
Phil. Mag., XLIII (1922), 229.Google Scholar
(7)Bailey, , Phil. Mag., XLVI (1923), 213;CrossRefGoogle Scholar
Phil. Mag., L (1925), 825.Google Scholar
Phil. Mag. Bailey, and Mcgee, , VI (1928), 1073.CrossRefGoogle Scholar
(8)Frank, and Pohl, , Verh. D. Ph. Gesell., IX (1907), 69.Google Scholar
(9)Loeb, , J. Frank. Inst., CXCVI (1923), 771.CrossRefGoogle Scholar
(10)Langevin, , Ann. de Chim., V (1905), 270.Google Scholar
(11)Thomson, J. J., Phil. Mag., XLVII (1924), 337.CrossRefGoogle Scholar
(12)Kovarik, , Phys. Rev., XXX (1910), 415.Google Scholar
(13)Wellisch, , Phil. Mag., XXXIV (1917), 33.CrossRefGoogle Scholar
(14)Thomson, J. J., Phil. Mag., XXX (1915), 321.CrossRefGoogle Scholar
(15)Townsend, and Tizard, , Proc. Roy. Soc. A, LXXXVIII (1913), 336.Google Scholar
(16)Loeb, , “Kinetic Theory of Gases” (1927), p. 513.Google Scholar
(17)Morton, , Phil. Mag., VI (1928), 795.CrossRefGoogle Scholar
(18)Erikson, , Phys. Rev., XX (1922), 117.CrossRefGoogle Scholar
(19)Loeb, , J. Frank. Inst., CXCVI (1923), 537.CrossRefGoogle Scholar
(20)Graaf, Van Der, Phil. Mag., VI (1928), 210.CrossRefGoogle Scholar
(21)Tyndall, , Starr, , and Powell, , P.R.S. (A), CXXI (1928), 172.Google Scholar